当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture
Materials Today ( IF 21.1 ) Pub Date : 2019-01-01 , DOI: 10.1016/j.mattod.2018.04.004
Gregory T. Hitz , Dennis W. McOwen , Lei Zhang , Zhaohui Ma , Zhezhen Fu , Yang Wen , Yunhui Gong , Jiaqi Dai , Tanner R. Hamann , Liangbing Hu , Eric D. Wachsman

Abstract Solid-state lithium batteries promise to exceed the capabilities of traditional Li-ion batteries in safety and performance. However, a number of obstacles have stood in the path of solid-state battery development, primarily high resistance and low capacity. In this work, these barriers are overcome through the fabrication of a uniquely microstructured solid electrolyte architecture based on a doped Li7La3Zr2O12 (LLZ) ceramic Li-conductor. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a scalable roll-to-roll manufacturing technique. The dense (>99%) center layer can be fabricated as thin as ∼10 μm and blocks dendrites over hundreds of cycles. The microstructured porous layers serve as electrode supports and increase the mechanical strength by ∼9×, making the cells strong enough to handle with ease. Additionally, the porous layers multiply the electrode–electrolyte interfacial surface area by >40× compared to a typical planar interface. Lithium symmetric cells based on the trilayer architecture were cycled at room temperature and achieved area-specific resistances (∼7 Ω-cm2) dramatically lower, and current densities dramatically higher (10 mA/cm2), than previously reported literature results. Moreover, to demonstrate scalability a large-format cell was fabricated with lithium metal in one porous layer and a sulfur electrode with conductive carbon and an ionic liquid interface in the other, achieving 1244 mAh/g S utilization and 195 Wh/kg based on total cell mass, showing a promising path to commercially viable, intrinsically safe lithium batteries with high specific energy and high energy density.

中文翻译:

可扩展的三层锂石榴石电解质架构中的高倍率锂循环

摘要 固态锂电池有望在安全性和性能方面超越传统锂离子电池。然而,固态电池的发展道路上存在许多障碍,主要是高电阻和低容量。在这项工作中,通过制造基于掺杂的 Li7La3Zr2O12 (LLZ) 陶瓷锂导体的独特微结构固体电解质结构来克服这些障碍。具体来说,多孔-致密-多孔三层结构是通过流延成型制造的,这是一种可扩展的卷对卷制造技术。致密 (>99%) 的中心层可以制造为约 10 μm 的薄,并在数百个循环中阻止枝晶。微结构多孔层作为电极支撑,将机械强度提高约 9 倍,使细胞足够坚固以轻松处理。此外,与典型的平面界面相比,多孔层使电极-电解质界面表面积增加了 40 倍以上。与之前报道的文献结果相比,基于三层结构的锂对称电池在室温下循环,实现了显着更低的区域特定电阻(~7 Ω-cm2)和显着更高的电流密度(10 mA/cm2)。此外,为了证明可扩展性,在一个多孔层中用锂金属制造了一个大型电池,另一个用导电碳和离子液体界面的硫电极制造,实现了 1244 mAh/g S 利用率和 195 Wh/kg,基于总细胞质量,显示出商业可行性的有希望的途径,
更新日期:2019-01-01
down
wechat
bug