当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Fluid Dynamics-Assisted Process Intensification Study for Biomass Fast Pyrolysis in a Gas–Solid Vortex Reactor
Energy & Fuels ( IF 5.2 ) Pub Date : 2018-06-05 00:00:00 , DOI: 10.1021/acs.energyfuels.8b01008
Shekhar R. Kulkarni 1 , Laurien A. Vandewalle 1 , Arturo Gonzalez-Quiroga 1 , Patrice Perreault 2 , Geraldine J. Heynderickx 1 , Kevin M. Van Geem 1 , Guy B. Marin 1
Affiliation  

The process intensification possibilities of a gas–solid vortex reactor have been studied for biomass fast pyrolysis using a combination of experiments (particle image velocimetry) and non-reactive and reactive three-dimensional computational fluid dynamics simulations. High centrifugal forces (greater than 30g) are obtainable, which allows for much higher slip velocities (>5 m s–1) and more intense heat and mass transfer between phases, which could result in higher selectivities of, for example, bio-oil production. Additionally, the dense yet fluid nature of the bed allows for a relatively small pressure drop across the bed (∼104 Pa). For the reactive simulations, bio-oil yields of up to 70 wt % are achieved, which is higher than reported in conventional fluidized beds across the literature. Convective heat transfer coefficients between gas and solid in the range of 600–700 W m–2 K–1 are observed, significantly higher than those obtained in competitive reactor technologies. This is partly explained by reducing undesirable gas–char contact times as a result of preferred segregation of unwanted char particles toward the exhaust. Experimentally, systematic char entrainment under simultaneous biomass–char operation suggested possible process intensification and a so-called “self-cleaning” tendency of vortex reactors.

中文翻译:

气固涡旋反应器中生物质快速热解的计算流体动力学辅助过程强化研究

通过结合实验(颗粒图像测速)和非反应性和反应性三维计算流体动力学模拟,研究了气固涡旋反应器对生物质快速热解过程进行强化的可能性。可以获得较高的离心力(大于30 g),从而可以实现更高的滑移速度(> 5 ms –1)以及更强的相间传热和传质,从而可以提高例如生物油的选择性生产。此外,床的致密而流动的特性使整个床的压降相对较小(〜10 4霸)。对于反应模拟,获得的生物油产率高达70 wt%,高于文献中常规流化床中报道的生物油产率。观察到气体与固体之间的对流传热系数在600–700 W m –2 K –1范围内,大大高于竞争性反应堆技术获得的对流传热系数。这部分是由于减少了不希望有的炭与炭接触的时间而造成的,这是由于不需要的炭颗粒向废气的偏析所致。从实验上看,在同时进行生物质-炭运行下系统地夹带炭提示了可能的过程强化和涡旋反应器的所谓“自清洁”趋势。
更新日期:2018-06-05
down
wechat
bug