当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes
Nature Materials ( IF 41.2 ) Pub Date : 2018-06-04 , DOI: 10.1038/s41563-018-0088-3
Firas Faisal , Corinna Stumm , Manon Bertram , Fabian Waidhas , Yaroslava Lykhach , Serhiy Cherevko , Feifei Xiang , Maximilian Ammon , Mykhailo Vorokhta , Břetislav Šmíd , Tomáš Skála , Nataliya Tsud , Armin Neitzel , Klára Beranová , Kevin C. Prince , Simon Geiger , Olga Kasian , Tobias Wähler , Ralf Schuster , M. Alexander Schneider , Vladimír Matolín , Karl J. J. Mayrhofer , Olaf Brummel , Jörg Libuda

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1,2,3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to ‘electrify’ complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal–support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal–support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.



中文翻译:

带电模型催化剂,用于了解液体电解质中的电催化反应

电催化是我们未来向可再生能源系统过渡的核心。大多数可再生能源的储能和转化技术都依赖于电催化过程,并且随着可再生能源廉价电能供应的增加,化学生产将在不久的将来实现电气化1,2,3。但是,我们对电催化的基本了解落后于经典的多相催化领域,而传统的多相催化一直是主导化学技术的领域。在这里,我们描述了一种新的策略来推进对电催化材料的基础研究。我们建议通过表面科学方法制备的“复杂化”基于氧化物的复杂模型催化剂,以探索液体电解质中的电催化反应。我们通过将原子定义的铂/钴氧化物模型催化剂转移到电化学环境中,同时保留其原子表面结构,证明了该概念的可行性。使用这种方法,我们探索了粒径的影响,并确定了迄今未知的金属-载体相互作用,该相互作用稳定了纳米颗粒界面上的氧化铂。金属与载体的相互作用开辟了一条新的协同反应途径,涉及金属铂和氧化铂。我们的研究结果说明了这一概念的潜力,它为建立用于基础电催化研究的原子定义模型电极提供了一种系统方法。

更新日期:2018-06-05
down
wechat
bug