当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO 3 nanofibers
Composites Science and Technology ( IF 8.3 ) Pub Date : 2018-08-01 , DOI: 10.1016/j.compscitech.2018.05.052
Zeyu Li , Feihua Liu , Guang Yang , He Li , Lijie Dong , Chuanxi Xiong , Qing Wang

Abstract Polymer nanocomposite dielectrics with high energy densities have shown great potential in electrical energy storage applications. However, these high energy densities are normally achieved at ultrahigh applied electric fields (≥400 MV/m), which is inconvenient for certain applications such as aerospace power systems and microelectronics. In this study, uniform BaTiO3 nanofibers (BT nfs) with a large aspect ratio were prepared via the electrospinning method, surface modified by poly(vinyl pyrrolidone) (PVP) and utilized as the fillers in the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) nanocomposites. It is found that the nanocomposite with 3 vol% BT nfs possesses a much enhanced discharged energy density of 8.55 J/cm3 at an applied electric field of 300 MV/m, which is 43% higher than that of the neat polymer matrix (i.e. 5.98 J/cm3) and more than four times that of the commercial biaxial oriented polypropylene dielectric (2 J/cm3 at over 600 MV/m). Comparative studies have been performed on the corresponding nanocomposites with BT nanoparticle fillers and pristine BT nfs. The improved energy storage performance is ascribed to the synergetic effects of surface modification and large aspect ratio of BT nfs. Our research provides a facile and effective approach to high-performance electrical energy storage materials which work efficiently at relatively low operating voltages.

中文翻译:

铁电聚合物纳米复合材料在相对低电场下由表面改性的 BaTiO 3 纳米纤维增强的储能性能

摘要 具有高能量密度的聚合物纳米复合电介质在电能存储应用中显示出巨大的潜力。然而,这些高能量密度通常是在超高外加电场 (≥400 MV/m) 下实现的,这对于某些应用如航空航天动力系统和微电子是不方便的。在这项研究中,通过静电纺丝方法制备了具有大纵横比的均匀 BaTiO3 纳米纤维(BT nfs),表面经聚(乙烯基吡咯烷酮)(PVP)改性,并用作聚(偏二氟乙烯-六氟丙烯)(PVDF)中的填料。 -HFP) 纳米复合材料。发现具有 3 vol% BT nfs 的纳米复合材料在 300 MV/m 的外加电场下具有 8.55 J/cm3 的显着增强的放电能量密度,比纯聚合物基质高 43%(即 5 . 98 J/cm3) 是商用双轴取向聚丙烯电介质的四倍多(2 J/cm3,超过 600 MV/m)。已经对具有 BT 纳米颗粒填料和原始 BT nfs 的相应纳米复合材料进行了比较研究。改进的储能性能归因于表面改性和 BT nfs 大纵横比的协同效应。我们的研究为高性能电能存储材料提供了一种简便有效的方法,该材料可在相对较低的工作电压下有效工作。改进的储能性能归因于表面改性和 BT nfs 大纵横比的协同效应。我们的研究为高性能电能存储材料提供了一种简便有效的方法,该材料可在相对较低的工作电压下有效工作。改进的储能性能归因于表面改性和 BT nfs 大纵横比的协同效应。我们的研究为高性能电能存储材料提供了一种简便有效的方法,该材料可在相对较低的工作电压下有效工作。
更新日期:2018-08-01
down
wechat
bug