当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adhesive bacterial amyloid nanofiber-mediated growth of metal–organic frameworks on diverse polymeric substrates†
Chemical Science ( IF 7.6 ) Pub Date : 2018-06-01 00:00:00 , DOI: 10.1039/c8sc01591k
Cuizheng Zhang 1, 2, 3, 4 , Yingfeng Li 1, 2, 3, 4, 5 , Hongliang Wang 1, 2, 3, 4 , Sanfeng He 1, 2, 3, 4 , Yiyi Xu 1, 2, 3, 4 , Chao Zhong 1, 2, 3, 4 , Tao Li 1, 2, 3, 4
Affiliation  

The development of a simple, robust, and generalizable approach for spatially controlled growth of metal–organic frameworks (MOFs) on diverse polymeric substrates is of profound technological significance but remains a major challenge. Here, we reported the use of adhesive bacterial amyloid nanofibers, also known as curli nanofibers (CNFs), major protein components of bacterial biofilms, as universal and chemically/mechanically robust coatings on various polymeric substrates to achieve controlled MOF growth with improved surface coverage up to 100-fold. Notably, owing to the intrinsic adhesive attributes of CNFs, our approach is applicable for MOF growth on both 2D surfaces and 3D objects regardless of their geometric complexity. Applying this technique to membrane fabrication afforded a thin-film composite membrane comprising a 760 ± 80 nm ZIF-8 selective layer grown on a microporous polyvinylidene fluoride (PVDF) support which exhibited a C3H6/C3H8 mixed-gas separation factor up to 10, C3H6 permeance up to 1110 GPU and operational stability up to 7 days. Our simple yet robust approach therefore provides new insights into designing new interfaces for mediating MOF growth and opens new opportunities for constructing new MOF-based membranes and devices.

中文翻译:

粘附性细菌淀粉样蛋白纳米纤维介导的金属-有机骨架在多种聚合物基质上的生长

在空间上控制金属有机骨架(MOF)在各种聚合物基材上生长的简单,鲁棒和通用化方法的开发具有深远的技术意义,但仍然是一个重大挑战。在这里,我们报道了使用细菌淀粉样蛋白纳米纤维粘合纤维(也称为卷曲纳米纤维(CNF))作为细菌生物膜的主要蛋白质成分,作为各种聚合物基质上的通用和化学/机械坚固涂层,以实现受控的MOF生长并改善了表面覆盖率到100倍。值得注意的是,由于CNF的固有粘合属性,我们的方法适用于2D表面和3D对象上的MOF生长,而不管它们的几何复杂度如何。3 H 6 / C 3 H 8混合气体分离系数高达10,C 3 H 6渗透率高达1110 GPU,运行稳定性长达7天。因此,我们简单而稳健的方法为设计用于介导MOF增长的新界面提供了新见识,并为构建基于MOF的新型膜和设备提供了新的机遇。
更新日期:2018-06-01
down
wechat
bug