当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Imidazolium-grafted graphene oxide via free radical polymerization: An efficient and simple method for an interpenetrating polymer network as electrolyte membrane
Composites Science and Technology ( IF 8.3 ) Pub Date : 2018-08-01 , DOI: 10.1016/j.compscitech.2018.05.003
Amina Ouadah , Tianwei Luo , Jing Wang , Shuitao Gao , Xing Wang , Xin Zhang , Zhou Fang , Zeyu Wu , Jie Wang , Changjin Zhu

Abstract In this work, graphene oxide (GO) is modified via free radical polymerization with butylvinylimidazolium (b-VIB) to produce GO/IM, which is characterized using FTIR spectral analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman analysis, X-ray photoelectron spectroscopy (XPS), elemental analysis, and a morphology study with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Further, GO/IM is incorporated for an in-situ polymerization, with the synthesized copolymer para-methyl styrene/butylvinylimidazolium (PMS/b-VIB) and synthesized poly(4,4′-diphenyl ether-5,5′-bibenzimidazole) (DPEBI) as a matrix, giving nanocomposite membranes referred to as GO/IM-X. These nanohybrid membranes possess higher conductivity than the pristine membrane of PMS/b-VIB/DPEBI and the conductivity increases with increasing amount of GO/IM, reaching 78.5 mS cm−1 at 100 °C and 26.5 mS cm−1 25 °C (chloride conductivity), enhancements of about 14.93% and 33.16% compared to the pristine membrane. Nanocomposite membrane properties were investigated; the swelling ratio and water uptake, ion exchange capacity (IEC), thermal properties via TGA, structure characterization using FTIR, morphology via TEM and mechanical properties. Taken together, these results suggest the present nanohybrid membranes have great potential for use as polymer electrolyte membranes with fuel cell applications.

中文翻译:

通过自由基聚合咪唑鎓接枝氧化石墨烯:一种有效且简单的互穿聚合物网络作为电解质膜的方法

摘要 在这项工作中,氧化石墨烯 (GO) 通过与丁基乙烯基咪唑鎓 (b-VIB) 的自由基聚合改性制备 GO/IM,使用 FTIR 光谱分析、X 射线衍射 (XRD)、热重分析 (TGA) 对其进行表征。 、拉曼分析、X 射线光电子能谱 (XPS)、元素分析以及使用透射电子显微镜 (TEM) 和扫描电子显微镜 (SEM) 进行的形态研究。此外,GO/IM 用于原位聚合,合成共聚物对甲基苯乙烯/丁基乙烯基咪唑鎓(PMS/b-VIB)和合成聚(4,4'-二苯基醚-5,5'-联苯并咪唑) (DPEBI) 作为基质,得到称为 GO/IM-X 的纳米复合膜。这些纳米混合膜比 PMS/b-VIB/DPEBI 的原始膜具有更高的电导率,并且电导率随着 GO/IM 量的增加而增加,在 100 °C 和 26.5 mS cm-1 25 °C 时达到 78.5 mS cm-1(氯化物电导率),与原始膜相比提高了约 14.93% 和 33.16%。研究了纳米复合膜的性能;溶胀率和吸水率、离子交换容量 (IEC)、通过 TGA 的热性能、使用 FTIR 的结构表征、通过 TEM 的形态和机械性能。总之,这些结果表明本纳米混合膜具有用作燃料电池应用的聚合物电解质膜的巨大潜力。与原始膜相比为 16%。研究了纳米复合膜的性能;溶胀率和吸水率、离子交换容量 (IEC)、通过 TGA 的热性能、使用 FTIR 的结构表征、通过 TEM 的形态和机械性能。总之,这些结果表明本纳米混合膜具有用作燃料电池应用的聚合物电解质膜的巨大潜力。与原始膜相比为 16%。研究了纳米复合膜的性能;溶胀率和吸水率、离子交换容量 (IEC)、通过 TGA 的热性能、使用 FTIR 的结构表征、通过 TEM 的形态和机械性能。总之,这些结果表明本纳米混合膜具有用作燃料电池应用的聚合物电解质膜的巨大潜力。
更新日期:2018-08-01
down
wechat
bug