当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials
Journal of Nuclear Materials ( IF 2.8 ) Pub Date : 2018-05-23 , DOI: 10.1016/j.jnucmat.2018.05.048
Ba Nghiep Nguyen , Charles H. Henager , Nicole R. Overman , Richard J. Kurtz

Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanics model. Large deformation, damage, and fracture are allowed to occur and are modeled in this region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.



中文翻译:

等离子材料延性相增韧钨的多尺度显微组织方法

通过将钨的延展相韧化(DPT)用于未来的面向聚变能的面向等离子体的材料,已显示出增加断裂韧性并相对于纯钨改变钨合金的延性-脆性转变温度是可行的。在DPT中,易碎相包含在脆性钨基体中,以增加材料的整体断裂功。这项研究使用多尺度建模方法对DPT钨材料(例如钨-铜复合材料)的变形行为进行建模,该方法涉及感兴趣的微结构双相(铜-钨)区域,其中的组成相被精细离散,并用A来描述。连续损伤力学模型。变形大,损坏大,允许发生断裂和断裂,并在与相邻均质弹性区域相连以形成宏观结构(例如试样)的该区域中进行建模。本文阐述了这种多尺度建模方法,用于分析承受三点弯曲的无缺口和单刃缺口(SENB)钨铜复合材料试样。将预测的载荷-位移响应和裂纹扩展模式与相应的实验结果进行比较,以验证模型。这样的模型可以帮助设计未来的DPT融合材料复合构型,包括韧性相的体积分数和微结构优化。本文阐述了这种多尺度建模方法,用于分析承受三点弯曲的无缺口和单边缘缺口(SENB)钨铜复合材料试样。将预测的载荷-位移响应和裂纹扩展模式与相应的实验结果进行比较,以验证模型。这样的模型可以帮助设计未来的DPT融合材料复合构型,包括韧性相的体积分数和微结构优化。本文阐述了这种多尺度建模方法,用于分析承受三点弯曲的无缺口和单刃缺口(SENB)钨铜复合材料试样。将预测的载荷-位移响应和裂纹扩展模式与相应的实验结果进行比较,以验证模型。这样的模型可以帮助设计未来的DPT融合材料复合构型,包括韧性相的体积分数和微结构优化。

更新日期:2018-05-23
down
wechat
bug