当前位置: X-MOL 学术IEEE Trans. Cybern. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep Neuro-Cognitive Co-Evolution for Fuzzy Attribute Reduction by Quantum Leaping PSO With Nearest-Neighbor Memeplexes
IEEE Transactions on Cybernetics ( IF 11.8 ) Pub Date : 2019-07-01 , DOI: 10.1109/tcyb.2018.2834390
Weiping Ding , Chin-Teng Lin , Zehong Cao

Attribute reduction with many patterns and indicators has been regarded as an important approach for large-scale data mining and machine learning tasks. However, it is extremely difficult for researchers to inadequately extract knowledge and insights from multiple overlapping and interdependent fuzzy datasets from the current changing and interconnected big data sources. This paper proposes a deep neuro-cognitive co-evolution for fuzzy attribute reduction (DNCFAR) that contains a combination of quantum leaping particle swarm optimization with nearest-neighbor memeplexes. A key element of DNCFAR resides in its deep neuro-cognitive cooperative co-evolution structure, which is explicitly permitted to identify interdependent variables and adaptively decompose them in the same neuro-subpopulation, with minimizing the complexity and nonseparability of interdependent variables among different fuzzy attribute subsets. Next DNCFAR formalizes to the different types of quantum leaping particles with nearest-neighbor memeplexes to share their respective solutions and deeply cooperate to evolve the assigned fuzzy attribute subsets. The experimental results demonstrate that DNCFAR can achieve competitive performance in terms of average computational efficiency and classification accuracy while reinforcing noise tolerance. Furthermore, it can be well applied to clearly identify different longitudinal surfaces of infant cerebrum regions, which indicates its great potential for brain disorder prediction based on fMRI.

中文翻译:

深度跃迁的PSO与近邻复合体的深度神经认知协同进化,用于模糊属性的约简

具有许多模式和指标的属性约简已被认为是大规模数据挖掘和机器学习任务的重要方法。但是,对于研究人员来说,从当前不断变化和相互关联的大数据源中,从多个重叠且相互依存的模糊数据集中提取知识和见解非常困难。本文提出了一种用于模糊属性约简(DNCFAR)的深度神经认知协同进化算法,该算法包含量子跃迁粒子群优化算法与最近邻居复合体的结合。DNCFAR的关键要素在于其深层的神经认知合作共进化结构,该结构明确允许识别相互依存的变量并将其自适应分解为相同的神经亚群,最大限度地减少了不同模糊属性子集之间相互依存变量的复杂性和不可分性。接下来,DNCFAR形式化为具有最近邻居复合体的不同类型的量子跃迁粒子,以共享它们各自的解决方案,并深入协作以发展所分配的模糊属性子集。实验结果表明,DNCFAR可以在平均计算效率和分类精度方面达到竞争性能,同时可以增强噪声容忍度。此外,它可以很好地应用于清楚地识别婴儿大脑区域的不同纵向表面,这表明其在基于fMRI的脑部疾病预测中具有巨大的潜力。接下来,DNCFAR正式化为具有最近邻居复合体的不同类型的量子跃迁粒子,以共享它们各自的解决方案,并深入合作以发展所分配的模糊属性子集。实验结果表明,DNCFAR可以在平均计算效率和分类精度方面达到竞争性能,同时可以增强噪声容忍度。此外,它可以很好地应用于清楚地识别婴儿大脑区域的不同纵向表面,这表明其在基于fMRI的脑部疾病预测中具有巨大的潜力。接下来,DNCFAR形式化为具有最近邻居复合体的不同类型的量子跃迁粒子,以共享它们各自的解决方案,并深入协作以发展所分配的模糊属性子集。实验结果表明,DNCFAR可以在平均计算效率和分类精度方面达到竞争性能,同时可以增强噪声容忍度。此外,它可以很好地应用于清楚地识别婴儿大脑区域的不同纵向表面,这表明其在基于fMRI的脑部疾病预测中具有巨大的潜力。实验结果表明,DNCFAR可以在平均计算效率和分类精度方面达到竞争性能,同时可以增强噪声容忍度。此外,它可以很好地应用于清楚地识别婴儿大脑区域的不同纵向表面,这表明其在基于fMRI的脑部疾病预测中具有巨大的潜力。实验结果表明,DNCFAR可以在平均计算效率和分类精度方面达到竞争性能,同时可以增强噪声容忍度。此外,它可以很好地应用于清楚地识别婴儿大脑区域的不同纵向表面,这表明其在基于fMRI的脑部疾病预测中具有巨大的潜力。
更新日期:2019-07-01
down
wechat
bug