当前位置: X-MOL 学术Polym. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of a polarized modulation technique in supramolecular science: chiroptical measurements of optically anisotropic systems
Polymer Journal ( IF 2.3 ) Pub Date : 2018-05-21 , DOI: 10.1038/s41428-018-0066-2
Takunori Harada

AbstractThe chirality of a supramolecular assembly provides particularly valuable information because the bonding nature of noncovalent interactions, such as electrostatic interactions, π effects, van der Waals forces, and hydrophobic effects, makes the development of supramolecular assemblies an attractive and useful approach in chiral induction, chiral amplification, and chirality transfer. However, chiroptical measurements of optically anisotropic samples cannot be generally achieved with modern chiroptical spectrophotometric methods such as circular dichroism (CD) or circular birefringence (CB) and circularly polarized luminescence (CPL) that are based on polarization modulation techniques because of the coupling effect of the nonideal optics and the electronics with strong macroscopic anisotropies, that is, nonchiral signals related to linearly polarized phenomena. These artifact signals are often much stronger than the chiroptical signals. Only CD and CPL spectrophotometers developed in 2001 and 2016, respectively, and integrated into a Stokes–Mueller matrix analysis for optically anisotropic samples are capable of obtaining accurate chirality measurements of samples with macroscopic anisotropies. Therefore, these spectrophotometers enable chiral investigations of optically anisotropic samples, for example, single crystals, supramolecular assemblies, gels, films, membranes, polymers, and liquid crystals. This focus review presents a short and elementary discussion of the chiroptical measurement techniques for optically anisotropic samples in supramolecular science and signal interpretation in polarization spectroscopy.The true chiroptical measurements of optically anisotropic samples cannot be generally achieved with modern chiroptical spectrophotometers such as circular dichroism and circularly polarized luminescence based on polarization modulation techniques because of the coupling effect of the nonideal optics and the electronics with macroscopic anisotropies. Artifact signals related to the nonchiral phenomena are often much stronger than the chiroptical signals. Universal chiroptical spectrophotometer (UCS) and comprehensive chiroptical spectrophotometer (CCS) integrated into the Stokes–Mueller matrix analysis for optically anisotropic samples can be applicable for accurate chiroptical measurements for samples with macroscopic anisotropies.

中文翻译:

偏振调制技术在超分子科学中的应用:光学各向异性系统的手性测量

摘要超分子组装的手性提供了特别有价值的信息,因为非共价相互作用的键合性质,如静电相互作用、π 效应、范德华力和疏水效应,使超分子组装的开发成为手性诱导中一种有吸引力且有用的方法,手性放大和手性转移。然而,光学各向异性样品的手性测量通常无法通过现代手性分光光度计方法实现,例如基于偏振调制技术的圆二色性 (CD) 或圆双折射 (CB) 和圆偏振发光 (CPL),因为其耦合效应具有强宏观各向异性的非理想光学和电子学,即,与线性极化现象相关的非手性信号。这些伪像信号通常比手性光学信号强得多。只有分别于 2001 年和 2016 年开发并集成到光学各向异性样品的 Stokes-Mueller 矩阵分析中的 CD 和 CPL 分光光度计能够获得具有宏观各向异性的样品的准确手性测量值。因此,这些分光光度计可以对光学各向异性样品进行手性研究,例如单晶、超分子组装体、凝胶、薄膜、膜、聚合物和液晶。这篇重点综述对超分子科学中光学各向异性样品的手性测量技术和偏振光谱学中的信号解释进行了简短而基本的讨论。由于非理想光学器件和具有宏观各向异性的电子器件的耦合效应,使用现代手性分光光度计(例如基于偏振调制技术的圆二色性和圆偏振发光)通常无法对光学各向异性样品进行真正的手性测量。与非手性现象相关的伪像信号通常比手性信号强得多。用于光学各向异性样品的 Stokes-Mueller 矩阵分析中集成的通用手性分光光度计 (UCS) 和综合手性分光光度计 (CCS) 可适用于具有宏观各向异性的样品的准确手性测量。
更新日期:2018-05-21
down
wechat
bug