当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using Embedded Discrete Fracture Model (EDFM) in numerical simulation of complex hydraulic fracture networks calibrated by microseismic monitoring data
Gas Science and Engineering Pub Date : 2018-07-01 , DOI: 10.1016/j.jngse.2018.04.019
Mahmood Shakiba , Jose Sergio de Araujo Cavalcante Filho , Kamy Sepehrnoori

Abstract Hydraulic stimulation of unconventional shale and tight reservoirs often creates a complex induced fracture network, which requires a comprehensive characterization for successful exploitation and development. One of the major technologies applied over the past decade to image hydraulic fractures is microseismic monitoring, which analyzes seismic information recorded during hydraulic stimulation to locate the rock deformation. Results of the microseismic data interpretation are then used to generate and calibrate a model of the hydraulic fracture network. However, because of the complexity of the fracture model and the shortcomings of reservoir simulators, direct application of these complex fracture networks has been very limited. Instead, oversimplified models are used to assess the efficiency of the hydraulic fracturing treatment. Such assessment techniques, without further modeling and simulation of hydrocarbon production and pressure drainage, fail to represent an accurate view of the connectivity and complexity of the fracture system. In this paper, we present the application of an Embedded Discrete Fracture Model (EDFM) in numerical simulation of realistic geometry of fractures. With EDFM, each fracture plane is embedded inside the computational matrix grid and is discretized by cell boundaries. We have implemented EDFM in The University of Texas at Austin (UT) in-house reservoir simulator UTCOMP. We discuss the implementation approach using non-neighboring connections. Using the developed simulator, we studied gas production from hydraulic fracture networks calibrated from actual microseismic monitoring data. We investigated the impact of fracture network geometry on the overall performance of these hydraulic stimulations. Simulation results indicate that the efficiency of well treatment is primarily controlled by the interconnectivity of hydraulic fractures and the distribution of conductivity within the fracture network. For a given microseismic cloud, a wide range of production responses was observed by changing the degree of connectivity in the calibrated model. Moreover, the study showed that taking into account the role of aseismic deformations (such as tensile openings) significantly increased cumulative production forecasts. Neglecting the effect of these fractures may lead to underestimation of ultimate recovery.

中文翻译:

使用嵌入式离散裂缝模型 (EDFM) 进行微震监测数据校准的复杂水力裂缝网络数值模拟

摘要 非常规页岩和致密储层的水力增产往往会形成复杂的诱导裂缝网络,需要综合表征才能成功开采和开发。微地震监测是过去十年中应用于水力裂缝成像的主要技术之一,它分析水力增产过程中记录的地震信息以定位岩石变形。然后使用微震数据解释的结果来生成和校准水力压裂网络模型。然而,由于裂缝模型的复杂性和油藏模拟器的不足,这些复杂裂缝网络的直接应用非常有限。相反,过度简化的模型用于评估水力压裂处理的效率。如果没有对油气生产和压力排放进行进一步建模和模拟,这种评估技术无法准确反映裂缝系统的连通性和复杂性。在本文中,我们介绍了嵌入式离散断裂模型 (EDFM) 在真实断裂几何形状的数值模拟中的应用。使用 EDFM,每个裂缝平面都嵌入在计算矩阵网格内,并由单元边界离散化。我们已经在德克萨斯大学奥斯汀分校 (UT) 的内部油藏模拟器 UTCOMP 中实施了 EDFM。我们讨论使用非相邻连接的实现方法。使用开发的模拟器,我们研究了根据实际微地震监测数据校准的水力压裂网络的天然气产量。我们研究了裂缝网络几何形状对这些水力增产的整体性能的影响。模拟结果表明,井处理效率主要受水力裂缝的互连性和裂缝网络内导流能力的分布控制。对于给定的微震云,通过改变校准模型中的连通性程度,观察到了广泛的生产响应。此外,研究表明,考虑到抗震变形(如拉伸开口)的作用显着增加了累积产量预测。忽略这些裂缝的影响可能会导致对最终恢复的低估。模拟结果表明,井处理效率主要受水力裂缝的互连性和裂缝网络内导流能力的分布控制。对于给定的微震云,通过改变校准模型中的连通性程度,观察到了广泛的生产响应。此外,研究表明,考虑到抗震变形(如拉伸开口)的作用显着增加了累积产量预测。忽略这些裂缝的影响可能会导致对最终恢复的低估。模拟结果表明,井处理效率主要受水力裂缝的互连性和裂缝网络内导流能力的分布控制。对于给定的微震云,通过改变校准模型中的连通性程度,观察到了广泛的生产响应。此外,研究表明,考虑到抗震变形(如拉伸开口)的作用显着增加了累积产量预测。忽略这些裂缝的影响可能会导致对最终恢复的低估。通过改变校准模型中的连接程度,观察到了广泛的生产响应。此外,研究表明,考虑到抗震变形(如拉伸开口)的作用显着增加了累积产量预测。忽略这些裂缝的影响可能会导致对最终恢复的低估。通过改变校准模型中的连接程度,观察到了广泛的生产响应。此外,研究表明,考虑到抗震变形(如拉伸开口)的作用显着增加了累积产量预测。忽略这些裂缝的影响可能会导致对最终恢复的低估。
更新日期:2018-07-01
down
wechat
bug