当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of microseismic data, completion data, and production data to characterize fracture geometry in the Permian Basin
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2018-08-01 , DOI: 10.1016/j.jngse.2018.05.025
Ross Patterson , Wei Yu , Kan Wu

Abstract Understanding how fractures propagate during multi-stage hydraulic fracturing enables better prediction for production and increases reserves. Fracture complexity due to fracture interaction makes it challenging to accurately quantify fracture geometry. Some solutions like proppant tracers and microseismic data acquisition may give a rough representation of fracture geometry, but they cannot provide complete information for fracture geometry without separate model verification. Through data synthesis from microseismicity, stimulation treatment, and production, calibrated models increase reliability in determining fracture geometry. The Permian Basin's unique lithology contains a high degree of vertical heterogeneity, accentuating the complexity that makes fracture modeling difficult. Microseismic data give gross fracture dimensions, including fracture height, length, and azimuth, and the direction of maximum horizontal stress while also providing a baseline for calibrating stimulation and reservoir simulators. Our stimulation model indicates that initiating fractures inside the Wolfcamp B2 formation results in propped height growth being contained by the Wolfcamp B1 and Wolfcamp B3 layers. Furthermore, the reservoir model also suggests that contributing reservoir volume comes mainly from the Wolfcamp B2 formation. In addition, from the microseismic analysis, the slurry stages initiated more events closer to the heel of the wellbore than the toe, which mimics the results from the fracture propagation simulator, where the fracture closest to the heel is wider since more fluid enters during the treatment than the other fractures.

中文翻译:

整合微震数据、完井数据和生产数据来表征二叠纪盆地的裂缝几何特征

摘要 了解多级水力压裂过程中裂缝的扩展方式可以更好地预测产量并增加储量。由于裂缝相互作用导致的裂缝复杂性使得准确量化裂缝几何形状具有挑战性。支撑剂示踪剂和微震数据采集等一些解决方案可以粗略地表示裂缝几何形状,但如果没有单独的模型验证,它们就无法提供裂缝几何形状的完整信息。通过来自微地震、增产处理和生产的数据合成,校准模型提高了确定裂缝几何形状的可靠性。二叠纪盆地独特的岩性包含高度的垂直非均质性,加剧了使裂缝建模变得困难的复杂性。微震数据给出了总裂缝尺寸,包括裂缝高度、长度和方位角以及最大水平应力的方向,同时还为校准增产和油藏模拟器提供基线。我们的刺激模型表明,在 Wolfcamp B2 地层内引发裂缝会导致 Wolfcamp B1 和 Wolfcamp B3 层包含支撑高度的增长。此外,储层模型还表明贡献的储层体积主要来自 Wolfcamp B2 地层。此外,从微地震分析来看,泥浆阶段在更靠近井眼跟部而不是趾部引发了更多事件,这与裂缝扩展模拟器的结果相似,其中最靠近跟部的裂缝更宽,因为更多的流体在此期间进入治疗效果优于其他骨折。和最大水平应力的方向,同时还为校准增产和油藏模拟器提供基线。我们的刺激模型表明,在 Wolfcamp B2 地层内引发裂缝会导致 Wolfcamp B1 和 Wolfcamp B3 层包含支撑高度的增长。此外,储层模型还表明贡献的储层体积主要来自 Wolfcamp B2 地层。此外,从微震分析来看,泥浆阶段在更靠近井眼跟部而不是趾部引发了更多事件,这与裂缝扩展模拟器的结果相似,其中最靠近跟部的裂缝更宽,因为更多的流体在此期间进入治疗效果优于其他骨折。和最大水平应力的方向,同时还为校准增产和油藏模拟器提供基线。我们的刺激模型表明,在 Wolfcamp B2 地层内引发裂缝会导致 Wolfcamp B1 和 Wolfcamp B3 层包含支撑高度的增长。此外,储层模型还表明贡献的储层体积主要来自 Wolfcamp B2 地层。此外,从微震分析来看,泥浆阶段在更靠近井眼跟部而不是趾部引发了更多事件,这与裂缝扩展模拟器的结果相似,其中最靠近跟部的裂缝更宽,因为更多的流体在此期间进入治疗效果优于其他骨折。
更新日期:2018-08-01
down
wechat
bug