当前位置: X-MOL 学术Macromol. Rapid Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Overcome the Conflict between Strength and Toughness in Poly(lactide) Nanocomposites through Tailoring Matrix–Filler Interface
Macromolecular Rapid Communications ( IF 4.6 ) Pub Date : 2018-05-17 , DOI: 10.1002/marc.201800047
Yang Sun 1, 2 , Xiaoshan Fan 1 , Xuehong Lu 3 , Chaobin He 1, 2
Affiliation  

Strength and toughness are the two most important prerequisites for structural applications. Unfortunately, these two properties are often in conflict in materials. Here, an effective and yet practical strategy is proposed to simultaneously strengthen and toughen poly(l‐lactide) (PLLA) using a simple rigid‐rubber “reinforcing element.” This element consists of a rigid graphene oxide (GO) sheet covalently coupled with poly(caprolactone‐co‐lactide) (PCLLA) rubbery layers, which can be easily synthesized and incorporated into PLLA matrix to develop composites with well‐tailored GO/PLLA interfaces. It is demonstrated that by adding the “reinforcing element,” i.e., GO‐graft‐rubber‐graft‐polyd‐lactide), PLLA exhibits higher strength and higher toughness, which could be attributed to the synergy of rigid GO and rubbery PCLLA working in tandem during deformation. It is further demonstrated that this strategy can also be applied to other filler systems, such as clay and particulate polyhedral oligomeric silsesquioxane, and other polymer systems, such as poly(methyl methacrylate). The strategy could be considered as a general design principle for reinforcing materials where both strength and toughness are the key concerns.

中文翻译:

通过定制基质-填料界面克服聚乳酸纳米复合材料的强度和韧性之间的冲突

强度和韧性是结构应用的两个最重要的先决条件。不幸的是,这两个属性通常在材料上存在冲突。这里,有效的和又实用的策略,提出了同时加强和增韧聚(使用简单的刚性-橡胶-丙交酯)(PLLA)“加强元件”。该元素由刚性氧化石墨烯(GO)片与聚己内酯-共-丙交酯(PCLLA)橡胶层共价偶联而成,可以轻松合成并掺入PLLA基质中,以开发具有良好定制的GO / PLLA界面的复合材料。已经证明,通过添加“加强元件”,即,GO-接枝-rubber-接枝-聚d丙交酯),PLLA表现出更高的强度和韧性,这可能归因于刚性GO和变形过程中橡胶PCLLA协同工作。进一步证明,该策略也可以应用于其他填料体系,例如粘土和颗粒多面体低聚倍半硅氧烷,以及其他聚合物体系,例如聚(甲基丙烯酸甲酯)。该策略可以被视为增强材料的一般设计原则,而强度和韧性都是关键问题。
更新日期:2018-05-17
down
wechat
bug