当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2018-05-18 , DOI: 10.1016/j.msea.2018.05.038
Ludovic Cauvin , Balaji Raghavan , Salima Bouvier , Xiaodong Wang , Fodil Meraghni

Zinc and its alloys are important industrial materials due to their high corrosion resistance, low cost and good ductility. However, the characterization of these materials remains a difficult task due to their highly anisotropic behavior, the latter being due to the influence of microstructural effects, i.e. loading orientation-dependent activation of different families of slip systems and subsequent texture evolution, rendering the development of a reliable material model considerably difficult. A micro-mechanical approach based on polycrystal plasticity would better describe the physical mechanisms underlying the macroscopic behavior. This improved model should ostensibly improve the comprehension of the mechanical behavior, compared to the macroscopic approach using solely phenomenological anisotropy models along with a prohibitively large number of experiments required to identify the material parameters. In this paper, a multi-scale Visco-Plastic Self-Consistent (VPSC) approach is used. It is based on a micro-scale model calibrated by microstructural and deformation mechanism information based on Electron Back-Scattered Diffraction (EBSD) to describe the macroscopic anisotropic mechanical response during sheet metal deformation. The critical resolved shear stress (CRSS) as well as the micro-scale crystal parameters are obtained by an inverse analysis comparing the simulated and experimental results in terms of obtained tensile curves along three different directions. In order to obtain a global solution for the identification, we then use the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) genetic algorithm to the inverse problem. We validate our approach by comparing the simulated and experimental textures and activated slip systems. Finally, the identified mechanical parameters are used to investigate the anisotropy of the alloy and predict its formability by determining the corresponding R-values and Hill yield coefficients.



中文翻译:

高各向异性锌合金的晶体可塑性和反分析的多尺度研究

锌及其合金由于其高耐腐蚀性,低成本和良好的延展性而成为重要的工业材料。然而,由于材料的高度各向异性,表征这些材料仍然是一项艰巨的任务,后者是由于微观结构效应的影响,即不同滑动系统族的加载取向依赖性活化以及随后的纹理演变,从而导致材料的发展。一个可靠的材料模型相当困难。基于多晶可塑性的微机械方法可以更好地描述宏观行为的物理机制。这种改进的模型表面上应该提高对机械性能的理解,与仅使用现象学各向异性模型的宏观方法以及识别材料参数所需的大量实验相比,该方法具有很大的优势。在本文中,使用了多尺度的粘塑性自洽(VPSC)方法。它基于通过基于电子背散射衍射(EBSD)的微观结构和变形机理信息校准的微观模型,来描述钣金变形过程中的宏观各向异性力学响应。通过反分析获得了临界解析剪切应力(CRSS)以及微观尺度的晶体参数,该反分析根据沿三个不同方向获得的拉伸曲线比较了模拟结果和实验结果。为了获得识别的整体解决方案,然后,我们使用协方差矩阵自适应进化策略(CMA-ES)遗传算法求解反问题。我们通过比较模拟纹理和实验纹理以及激活的滑移系统来验证我们的方法。最后,确定的机械参数用于研究合金的各向异性,并通过确定相应的R值和Hill屈服系数来预测其可成形性。

更新日期:2018-05-18
down
wechat
bug