当前位置: X-MOL 学术Harmful Algae › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of extraction methods for quantification of microcystin-LR and microcystin-RR in fish, vegetable, and soil matrices using UPLC-MS/MS.
Harmful Algae ( IF 6.6 ) Pub Date : 2018-05-16 , DOI: 10.1016/j.hal.2018.04.009
Manjunath Manubolu 1 , Jiyoung Lee 2 , Kenneth M Riedl 3 , Zi Xun Kua 4 , Lindsay P Collart 5 , Stuart A Ludsin 4
Affiliation  

Human-driven environmental change has increased the occurrence of harmful cyanobacteria blooms in aquatic ecosystems. Concomitantly, exposure to microcystin (MC), a cyanobacterial toxin that can accumulate in animals, edible plants, and agricultural soils, has become a growing public health concern. For accurate estimation of health risks and timely monitoring, availability of reliable detection methods is imperative. Nonetheless, quantitative analysis of MCs in many types of biological and environmental samples has proven challenging because matrix interferences can hinder sample preparation and extraction procedures, leading to poor MC recovery. Herein, controlled experiments were conducted to enhance the use of ultra-performance liquid-chromatography tandem-mass spectrometry (UPLC–MS/MS) to recover MC-LR and MC-RR at a range of concentrations in seafood (fish), vegetables (lettuce), and environmental (soil) matrices. Although these experiments offer insight into detailed technical aspects of the MC homogenization and extraction process (i.e., sonication duration and centrifugation speed during homogenization; elution solvent to use during the final extraction), they centered on identifying the best (1) solvent system to use during homogenization (2–3 tested per matrix) and (2) single-phase extraction (SPE) column type (3 tested) to use for the final extraction. The best procedure consisted of the following, regardless of sample type: centrifugation speed = 4200 × g; elution volume = 8 mL; elution solvent = 80% methanol; and SPE column type = hydrophilic–lipophilic balance (HLB), with carbon also being satisfactory for fish. For sonication, 2 min, 5 min, and 10 min were optimal for fish, lettuce, and soil matrices, respectively. Using the recommended HLB column, the solvent systems that led to the highest recovery of MCs were methanol:water:butanol for fish, methanol:water for lettuce, and EDTA-Na4P2O7 for soils. Given that the recommended procedures resulted in average MC-LR and MC-RR recoveries that ranged 93 to 98%, their adoption for the preparation of samples with complex matrices before UPLC–MS/MS analysis is encouraged.



中文翻译:

使用UPLC-MS / MS优化了鱼类,蔬菜和土壤基质中微囊藻毒素LR和微囊藻毒素RR定量提取方法的定量。

人为驱动的环境变化增加了水生生态系统中有害蓝藻水华的发生。随之而来的是,微囊藻毒素(MC)是一种可以在动物,食用植物和农业土壤中积累的蓝细菌毒素,已经引起越来越多的公共卫生关注。为了准确估计健康风险并及时进行监测,必须使用可靠的检测方法。尽管如此,对许多类型的生物和环境样品中的MC进行定量分析已证明具有挑战性,因为基质干扰会阻碍样品的制备和提取程序,导致MC回收率低。在此处,进行了对照实验,以增强使用超高效液相色谱串联质谱(UPLC–MS / MS)回收各种浓度的海鲜(鱼),蔬菜(生菜)中的MC-LR和MC-RR以及环境(土壤)矩阵。尽管这些实验提供了对MC均质化和提取过程的详细技术方面的见识(即,均质化过程中的超声处理持续时间和离心速度;最终提取过程中要使用的洗脱溶剂),但它们集中于确定最佳(1)所用溶剂系统在均质过程中(每个基质进行2-3次测试)和(2)单相萃取(SPE)色谱柱类型(已测试3种)用于最终萃取。最佳方法包括以下步骤,而与样品类型无关:离心速度= 4200× 蔬菜(生菜)和环境(土壤)基质。尽管这些实验提供了对MC均质化和提取过程的详细技术方面的见识(即,均质化过程中的超声处理持续时间和离心速度;最终提取过程中要使用的洗脱溶剂),但它们集中于确定最佳(1)所用溶剂系统在均质过程中(每个基质进行2-3次测试)和(2)单相萃取(SPE)色谱柱类型(已测试3种)用于最终萃取。最佳方法包括以下步骤,而与样品类型无关:离心速度= 4200× 蔬菜(生菜)和环境(土壤)基质。尽管这些实验提供了对MC均质化和提取过程的详细技术方面的见识(即,均质化过程中的超声处理持续时间和离心速度;最终提取过程中要使用的洗脱溶剂),但它们集中于确定最佳(1)所用溶剂系统在均质过程中(每个基质进行2-3次测试)和(2)单相萃取(SPE)色谱柱类型(已测试3种)用于最终萃取。最佳方法包括以下步骤,而与样品类型无关:离心速度= 4200× 最终萃取中使用的洗脱溶剂),他们着重于确定最佳的(1)均质化过程中使用的溶剂系统(每个基质进行2-3次测试)和(2)单相萃取(SPE)色谱柱类型(已测试3种)用于最终提取。最佳方法包括以下步骤,而与样品类型无关:离心速度= 4200× 最终萃取中使用的洗脱溶剂),他们着重于确定最佳的(1)均质化过程中使用的溶剂系统(每个基质进行2-3次测试)和(2)单相萃取(SPE)色谱柱类型(已测试3种)用于最终提取。最佳方法包括以下步骤,而与样品类型无关:离心速度= 4200× g ; 洗脱体积= 8 mL; 洗脱溶剂= 80%甲醇;SPE色谱柱类型=亲水-亲脂平衡(HLB),碳对鱼类也很满意。对于超声处理,分别适合于鱼类,生菜和土壤基质的最佳处理时间分别为2分钟,5分钟和10分钟。使用推荐的HLB色谱柱,导致MC回收率最高的溶剂系统是:鱼的甲醇:水:丁醇,莴苣的甲醇:水和土壤的EDTA-Na 4 P 2 O 7。鉴于所推荐的程序导致MC-LR和MC-RR的平均回收率在93%到98%之间,因此鼓励在UPLC-MS / MS分析之前采用它们来制备具有复杂基质的样品。

更新日期:2018-05-16
down
wechat
bug