当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmon-Mediated Electrocatalysis for Sustainable Energy: From Electrochemical Conversion of Different Feedstocks to Fuel Cell Reactions
ACS Energy Letters ( IF 19.3 ) Pub Date : 2018-05-15 00:00:00 , DOI: 10.1021/acsenergylett.8b00461
Chi Hun Choi 1 , Kyungwha Chung 1 , Trang-T. H. Nguyen 2 , Dong Ha Kim 1
Affiliation  

The incorporation of plasmonic properties recently emerged as an advanced strategy for achieving high-performance catalysis. The hot carriers and near-field enhancement induced by localized surface plasmon resonance (LSPR) excitation are the key parameters that are responsible for the enhanced performance. Thus, the logical combination of the plasmonic nanostructures and electrocatalytic materials can be an effective strategy for further widening application of the plasmonic effect. This short Review provides a concise overview of the fundamental principles of LSPR; the mechanism of plasmon-enhanced electrocatalysis; alternative design methods of plasmonic nanomaterials for various catalytic systems; and recent progress in plasmon-mediated electrocatalysis for the production of energy, including electrochemical conversion of different feedstocks into fuels along with fuel cell catalysis. This Review also sheds light on the areas where major advancements are required to further improve the field of plasmon-mediated electrocatalysis to achieve a major paradigm shift toward a sustainable future.

中文翻译:

等离子体介电催化可持续能源:从不同原料的电化学转化到燃料电池反应

最近,引入等离子性质成为实现高性能催化的高级策略。局部表面等离子体共振(LSPR)激发引起的热载流子和近场增强是负责增强性能的关键参数。因此,等离激元纳米结构和电催化材料的逻辑组合可以成为进一步扩大等离激元效应应用的有效策略。这份简短的回顾简要概述了LSPR的基本原理;等离子体增强电催化的机理 用于各种催化系统的等离激元纳米材料的替代设计方法;等离子体介导的电催化产生能量的最新进展,包括将不同的原料电化学转化为燃料以及燃料电池催化。这篇综述还阐明了需要进一步发展的领域,以进一步改善等离激元介导的电催化领域,以实现向可持续未来的重大转变。
更新日期:2018-05-15
down
wechat
bug