当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Crystalline-Amorphous Nanolaminates Using Deformation Mechanism Maps
Acta Materialia ( IF 9.4 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.actamat.2018.05.006
Bin Cheng , Jason R. Trelewicz

Abstract The deformation behavior of crystalline-amorphous nanolaminates is controlled by a confluence of mechanisms involving dislocation and grain boundary (GB) plasticity in the crystalline phase, shear transformation zone (STZ) plasticity and its localization into shear bands in the amorphous phase, and their coupling across the amorphous-crystalline interface. Leveraging molecular dynamics simulations, the influence of microstructural length scales on the mechanical behavior is quantified using deformation mechanism maps, which provide mechanistic insights into the scaling of mechanical properties with layer thickness ratio and grain size. We find that flow stress primarily scales with the relative phase fraction as deformation shifts toward STZ dominated plasticity with increasing amorphous layer thickness while the onset of plasticity is also influenced by grain size due to the role of GB plasticity in yielding. Toughness limiting mechanisms involve void formation at GBs and shear localization in the amorphous layer, where the former is attributed to dislocation-GB interactions during mixed mode deformation and the latter to dislocation slip bands biasing the process of shear localization. An Ashby plot representation combining flow stress with void and shear band localization factors demonstrates that configurations with microstructural length scales promoting cooperative strain accommodation through the coupling of dislocation, GB, and STZ plasticity exhibited limited strain localization while retaining a high flow stress, thus providing a mechanistic basis for microstructural design of crystalline-amorphous nanolaminates.

中文翻译:

使用变形机制图设计结晶非晶纳米层压板

摘要 结晶-非晶纳米层压板的变形行为受晶相中位错和晶界 (GB) 塑性、剪切转变区 (STZ) 塑性及其在非晶相中剪切带的定位以及它们的影响。非晶-晶体界面上的耦合。利用分子动力学模拟,微观结构长度尺度对机械行为的影响使用变形机制图进行量化,这提供了对机械性能随层厚比和晶粒尺寸缩放的机械见解。我们发现,随着非晶层厚度的增加,随着变形向 STZ 主导的塑性转变,流动应力主要与相对相分数成比例,而由于 GB 塑性在屈服中的作用,塑性的开始也受晶粒尺寸的影响。韧性限制机制涉及 GB 处的空隙形成和非晶层中的剪切局部化,其中前者归因于混合模式变形过程中的位错-GB 相互作用,而后者归因于位错滑移带偏向剪切局部化过程。结合流动应力与空隙和剪切带定位因子的阿什比图表示表明,具有微观结构长度尺度的配置通过位错、GB、
更新日期:2018-07-01
down
wechat
bug