当前位置: X-MOL 学术ACS Infect. Dis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Derivatives of Ribosome-Inhibiting Antibiotic Chloramphenicol Inhibit the Biosynthesis of Bacterial Cell Wall
ACS Infectious Diseases ( IF 4.0 ) Pub Date : 2018-05-01 00:00:00 , DOI: 10.1021/acsinfecdis.8b00078
Sivan Louzoun Zada 1 , Keith D. Green 2 , Sanjib K. Shrestha 2 , Ido M. Herzog 1 , Sylvie Garneau-Tsodikova 2 , Micha Fridman 1
Affiliation  

Here, we describe the preparation and evaluation of α,β-unsaturated carbonyl derivatives of the bacterial translation inhibiting antibiotic chloramphenicol (CAM). Compared to the parent antibiotic, two compounds containing α,β-unsaturated ketones (1 and 4) displayed a broader spectrum of activity against a panel of Gram-positive pathogens with a minimum inhibitory concentration range of 2–32 μg/mL. Interestingly, unlike the parent CAM, these compounds do not inhibit bacterial translation. Microscopic evidence and metabolic labeling of a cell wall peptidoglycan suggested that compounds 1 and 4 caused extensive damage to the envelope of Staphylococcus aureus cells by inhibition of the early stage of cell wall peptidoglycan biosynthesis. Unlike the effect of membrane-disrupting antimicrobial cationic amphiphiles, these compounds did not rapidly permeabilize the bacterial membrane. Like the parent antibiotic CAM, compounds 1 and 4 had a bacteriostatic effect on S. aureus. Both compounds 1 and 4 were cytotoxic to immortalized nucleated mammalian cells; however, neither caused measurable membrane damage to mammalian red blood cells. These data suggest that the reported CAM-derived antimicrobial agents offer a new molecular scaffold for development of novel bacterial cell wall biosynthesis inhibiting antibiotics.

中文翻译:

抑制核糖体的抗生素氯霉素的衍生物抑制细菌细胞壁的生物合成

在这里,我们描述了细菌翻译抑制抗生素氯霉素(CAM)的α,β-不饱和羰基衍生物的制备和评价。与母体抗生素相比,两种含有α,β-不饱和酮的化合物(14)对一组革兰氏阳性病原体表现出更广谱的活性,其最低抑菌浓度范围为2–32μg/ mL。有趣的是,与母体CAM不同,这些化合物不会抑制细菌的翻译。显微镜证据和细胞壁肽聚糖的代谢标记表明化合物14金黄色葡萄球菌的包膜造成了广泛破坏通过抑制细胞壁肽聚糖生物合成的早期来抑制细胞的生长。与破坏膜的阳离子阳离子两亲物的作用不同,这些化合物不能迅速渗透细菌膜。像母体抗生素CAM一样,化合物14金黄色葡萄球菌具有抑菌作用。化合物14对永生化的有核哺乳动物细胞都具有细胞毒性。但是,它们都没有对哺乳动物的红细胞造成可测量的膜损伤。这些数据表明,所报道的源自CAM的抗微生物剂为开发新型细菌细胞壁生物合成抑制性抗生素提供了新的分子支架。
更新日期:2018-05-01
down
wechat
bug