当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical Confinement Effects for Innovating New Nanopore Sensing Mechanisms
Small Methods ( IF 12.4 ) Pub Date : 2018-04-30 , DOI: 10.1002/smtd.201700390
Yi-Lun Ying 1 , Rui Gao 1 , Yong-Xu Hu 1 , Yi-Tao Long 1
Affiliation  

Nanopores employ a confined space for electrochemical sensing of high‐throughput individual biomolecules in solution. Tremendous research efforts over the last two decades have made nanopore techniques become a powerful single‐molecule tool in nanotechnology and biotechnology. The most general mechanism of nanopore sensing is based on a volume‐exclusion effect. However, the increasing demands on revealing the single‐molecule chemistry and biophysics require that nanopores not only provide structural/conformational/sequencing information but also directly read the dynamic functional properties of single molecules. Here, the concept of electrochemical confinement effects in nanopores for developing new sensing mechanisms is proposed and extended. Three examples of electrochemical confinement effects are demonstrated here including the confinement of strong interactions between pore and analyte, the electron‐transfer process, and the subwavelength light inside nanopores. In particular, the latter two effects lead to novel detection mechanisms beyond volume exclusion, which can efficiently convert the dynamic function/structure of single molecules into ionic signatures or optical patterns. These achievements give rise to the possibility of adopting nanopore sensing in a wider range of future applications in both life and material sciences.

中文翻译:

创新的纳米孔传感机制的电化学限制效应。

纳米孔利用有限的空间对溶液中的高通量单个生物分子进行电化学传感。过去二十年来的大量研究工作已使纳米孔技术成为纳米技术和生物技术中强大的单分子工具。纳米孔感测的最一般机制是基于体积排斥效应。然而,越来越多的揭示单分子化学和生物物理学的需求要求纳米孔不仅提供结构/构象/序列信息,而且还必须直接读取单分子的动态功能特性。在这里,提出并扩展了纳米孔中电化学约束效应的概念,以开发新的传感机制。这里展示了三个电化学约束效应的例子,包括孔隙与分析物之间强相互作用的约束,电子转移过程以及纳米孔内部的亚波长光。特别地,后两种效应导致体积检测之外的新颖检测机制,该机制可以有效地将单个分子的动态功能/结构转换为离子标记或光学图案。这些成就使人们有可能在生命科学和材料科学的更广泛的未来应用中采用纳米孔传感。可以有效地将单个分子的动态功能/结构转换为离子标记或光学图案。这些成就使人们有可能在生命科学和材料科学的更广泛的未来应用中采用纳米孔传感。可以有效地将单个分子的动态功能/结构转换为离子标记或光学图案。这些成就使人们有可能在生命科学和材料科学的更广泛的未来应用中采用纳米孔传感。
更新日期:2018-04-30
down
wechat
bug