当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Metallic Lithium Anode Protection by the Molecular‐Layer‐Deposition Technique
Small Methods ( IF 12.4 ) Pub Date : 2018-03-26 , DOI: 10.1002/smtd.201700417
Yang Zhao 1 , Lyudmila V. Goncharova 2 , Qian Sun 1 , Xia Li 1 , Andrew Lushington 1 , Biqiong Wang 1 , Ruying Li 1 , Fang Dai 3 , Mei Cai 3 , Xueliang Sun 1
Affiliation  

The Li metal anode is considered as a promising alternative candidate for next‐generation Li metal batteries with high specific capacity, low potential, and light weight. However, the crucial problem for the Li metal anode is one of the biggest challenges. Mossy or dendritic growth of Li occurs in the repetitive Li stripping/plating process with an unstable solid electrolyte interphase (SEI) layer of nonuniform ionic flux, which can not only lead to low Coulombic efficiency, but can also create the risk of a short‐circuit, resulting in possible burning or explosion. Here, an advanced molecular‐layer‐deposition (MLD) Alucone protective layer is first demonstrated for Li metal anodes. By protecting Li foil with a controllable Alucone layer, the dendrites and mossy Li formation are effectively suppressed and the lifetime is significantly improved in different electrolytes (carbonate‐based and ether‐based). Furthermore, the detailed surface changes are studied by the advanced characterization technique of Rutherford backscattering spectrometry. The novel design of the MLD‐protected Li metal anode may bring in new opportunities to the realization of the next‐generation high‐energy‐density Li metal batteries.

中文翻译:

分子层沉积技术对金属锂阳极的保护作用强

锂金属阳极被认为是具有高比容量,低电势和重量轻的下一代锂金属电池的有前途的替代选择。然而,锂金属阳极的关键问题是最大的挑战之一。Li的生苔或树枝状生长发生在重复的Li剥离/镀覆过程中,具有不稳定的固体电解质中间相(SEI)层且离子流量不均匀,这不仅会导致库仑效率低,而且还可能导致短路的风险。电路,可能导致燃烧或爆炸。在此,首次展示了用于锂金属阳极的高级分子层沉积(MLD)阿奇酮保护层。通过用可控的Alucone层保护Li箔,在不同的电解质(基于碳酸盐和基于醚)中,树枝状晶体和长满苔藓的锂的形成均得到有效抑制,并且寿命得到了显着提高。此外,通过先进的卢瑟福背散射光谱表征技术研究了表面的详细变化。受MLD保护的锂金属阳极的新颖设计可能为实现下一代高能量密度锂金属电池带来新的机遇。
更新日期:2018-03-26
down
wechat
bug