当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Full‐Spectrum Liquid‐Junction Quantum Dot–Sensitized Solar Cells by Integrating Surface Plasmon–Enhanced Electrocatalysis
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-04-16 , DOI: 10.1002/aenm.201800136
Feifan Wang 1 , Hongju Wang 2 , Xingyi Liu 1 , Dapeng Wu 2 , Kai Jiang 2 , Qi Li 1 , Dongsheng Xu 1
Affiliation  

Full‐spectrum solar energy utilization is the ultimate goal of high‐performance photovoltaic devices. However, the present approaches to enhance sunlight harvesting in the cost‐effective quantum dot–sensitized solar cells mainly focus on the use of high‐frequency photons with the long‐wavelength sunlight being left behind. Here, a full‐spectrum solar cell architecture is proposed and the near‐infrared light–enhanced cell performance is demonstrated with a plasmonic and electrocatalytic dual‐function CuS nanostructure electrode. In the CdS/CdSe quantum dot–sensitized solar cells, an enhancement factor as high as 15% in power conversion efficiency is obtained for the device with near‐infrared part of 1‐sun light irradiating from the counter electrode side and ultraviolet–visible part incidence from the photoanode side. Electrochemical characterizations show that the enhanced electrocatalytic activity toward polysulfide reduction is attributed to the better device performance. This may be due to the plasmon‐induced photothermal effect and interfacial energy transfer from the counter electrode under the near‐infrared light, which accelerate the preceding chemical reactions for polysulfide reduction and improve the charge transfer at the electrode–electrolyte interface. This strategy provides an alternative way to achieve a full‐spectrum liquid‐junction solar cell via the integration of plasmon‐enhanced electrocatalysis into photovoltaics.

中文翻译:

通过整合表面等离激元增强的电催化作用的全光谱液体连接量子点敏化太阳能电池

全光谱太阳能利用是高性能光伏设备的最终目标。但是,目前在具有成本效益的量子点敏化太阳能电池中增强日光收集的方法主要集中在高频光子的使用上,而长波长日光却被抛在了后面。在此,提出了一种全光谱太阳能电池架构,并通过等离激元和电催化双功能CuS纳米结构电极证明了近红外光增强的电池性能。在CdS / CdSe量子点敏化太阳能电池中,具有从对电极侧照射的1阳光的近红外部分和紫外可见部分的器件,功率转换效率提高了15%从光阳极一侧入射。电化学表征表明,对多硫化物还原的增强的电催化活性归因于更好的器件性能。这可能是由于等离激元诱导的光热效应和近红外光下反电极的界面能量转移,这加速了先前的化学反应,使多硫化物还原并改善了电极-电解质界面的电荷转移。通过将等离激元增强的电催化集成到光伏中,该策略提供了另一种方法来实现全光谱液接太阳能电池。这可能是由于等离激元诱导的光热效应和近红外光下反电极的界面能量转移,这加速了先前的化学反应,使多硫化物还原并改善了电极-电解质界面的电荷转移。通过将等离激元增强的电催化集成到光伏中,该策略提供了另一种方法来实现全光谱液接太阳能电池。这可能是由于等离激元诱导的光热效应和近红外光下反电极的界面能量转移,这加速了先前的化学反应,使多硫化物还原并改善了电极-电解质界面的电荷转移。通过将等离激元增强的电催化集成到光伏中,该策略提供了另一种方法来实现全光谱液接太阳能电池。
更新日期:2018-04-16
down
wechat
bug