当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High‐Stability All‐Inorganic Perovskite Solar Cells with Carbon Electrodes
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-04-19 , DOI: 10.1002/aenm.201800504
Jia Liang 1, 2 , Zonghao Liu 1 , Longbin Qiu 1 , Zafer Hawash 1 , Lingqiang Meng 1 , Zhifang Wu 1 , Yan Jiang 1 , Luis K. Ono 1 , Yabing Qi 1
Affiliation  

In this work all‐inorganic perovskite CsPbIBr2 are doped with Mn to compensate their shortcomings in band structure for the application of perovskite solar cells (PSCs). The novel Mn‐doped all‐inorganic perovskites, CsPb1−xMnxI1+2xBr2−2x, are prepared in ambient atmosphere. As the concentration of Mn2+ ions increases, the bandgaps of CsPb1−xMnxI1+2xBr2−2x decrease from 1.89 to 1.75 eV. Additionally, when the concentration of Mn dopants is appropriate, this novel Mn‐doped all‐inorganic perovskite film shows better crystallinity and morphology than its undoped counterpart. These advantages alleviate the energy loss in hole transfer and facilitate the charge‐transfer in perovskites, therefore, PSCs based on these novel CsPb1−xMnxI1+2xBr2−2x perovskite films display better photovoltaic performance than the undoped CsPbIBr2 perovskite films. The reference CsPbIBr2 cell reaches a power conversion efficiency (PCE) of 6.14%, comparable with the previous reports. The CsPb1−xMnxI1+2xBr2−2x cells reach the highest PCE of 7.36% (when x = 0.005), an increase of 19.9% in PCE. Furthermore, the encapsulated CsPb0.995Mn0.005I1.01Br1.99 cells exhibit good stability in ambient atmosphere. The storage stability measurements on the encapsulated PSCs reveal that PCE is dropped by only 8% of the initial value after >300 h in ambient. Such improved efficiency and stability are achieved using low‐cost carbon electrodes (without expensive hole transport materials and Au electrodes).

中文翻译:

通过Mn取代增强卤化铯铯的光学,电子,晶体和形态学特性,从而获得具有碳电极的高稳定性全无机钙钛矿太阳能电池

在这项工作中,所有无机钙钛矿CsPbIBr 2均掺杂了Mn,以弥补其在钙钛矿太阳能电池(PSC)应用中的能带结构缺陷。新型的Mn掺杂全无机钙钛矿CsPb 1- x Mn x I 1 + 2 x Br 2-2 x在环境大气中制备。随着Mn 2+离子浓度的增加,CsPb 1− x Mn x I 1 + 2 x Br 2-2 x的带隙从1.89降至1.75 eV。此外,当锰掺杂剂的浓度合适时,这种新型的锰掺杂的全无机钙钛矿膜比未掺杂的锰钙钛矿膜具有更好的结晶度和形貌。这些优点减轻了空穴传输中的能量损失,并促进了钙钛矿中的电荷转移,因此,基于这些新颖的CsPb 1− x Mn x I 1 + 2 x Br 2−2 x钙钛矿薄膜的PSC表现出比未掺杂的更好的光伏性能。 CsPbIBr 2钙钛矿薄膜。参考CsPbIBr 2电池的功率转换效率(PCE)为6.14%,与以前的报告相当。CsPb 1- xMn x I 1 + 2 x Br 2−2 x电池达到了7.36%的最高PCE(当x  = 0.005时),PCE增长了19.9%。此外,封装的CsPb 0.995 Mn 0.005 I 1.01 Br 1.99电池在环境气氛中表现出良好的稳定性。在封装的PSC上的存储稳定性测量表明,在环境中> 300 h后,PCE仅下降了初始值的8%。使用低成本的碳电极(无需昂贵的空穴传输材料和金电极)可实现这种提高的效率和稳定性。
更新日期:2018-04-19
down
wechat
bug