当前位置: X-MOL 学术ACS Cent. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics.
ACS Central Science ( IF 12.7 ) Pub Date : 2018-04-25 , DOI: 10.1021/acscentsci.8b00082
Mengning Ding 1, 1 , Guangyan Zhong 1 , Zipeng Zhao 1 , Zhihong Huang 1 , Mufan Li 1 , Hui-Ying Shiu 1 , Yuan Liu 1, 1 , Imran Shakir 2 , Yu Huang 1, 1 , Xiangfeng Duan 1, 1
Affiliation  

The development of future sustainable energy technologies relies critically on our understanding of electrocatalytic reactions occurring at the electrode-electrolyte interfaces, and the identification of key reaction promoters and inhibitors. Here we present a systematic in situ nanoelectronic measurement of anionic surface adsorptions (sulfates, halides, and cyanides) on ultrathin platinum nanowires during active electrochemical processes, probing their competitive adsorption behavior with oxygenated species and correlating them to the electrokinetics of the oxygen reduction reaction (ORR). The competitive anionic adsorption features obtained from our studies provide fundamental insight into the surface poisoning of Pt-catalyzed ORR kinetics by various anionic species. Particularly, the unique nanoelectronic approach enables highly sensitive characterization of anionic adsorption and opens an efficient pathway to address the practical poisoning issue (at trace level contaminations) from a fundamental perspective. Through the identified nanoelectronic indicators, we further demonstrate that rationally designed competitive anionic adsorption may provide improved poisoning resistance, leading to performance (activity and lifetime) enhancement of energy conversion devices.

中文翻译:

竞争性界面阴离子化学吸附的片上原位监测,作为氧还原动力学的指标。

未来可持续能源技术的发展在很大程度上取决于我们对在电极-电解质界面发生的电催化反应的理解,以及对关键反应促进剂和抑制剂的识别。在这里,我们介绍了在主动电化学过程中对超薄铂纳米线上阴离子表面吸附(硫酸根,卤离子和氰根)的系统原位纳米电子测量,探讨了它们与含氧物种的竞争性吸附行为,并将它们与氧还原反应的电动动力学相关联( ORR)。从我们的研究中获得的具有竞争性的阴离子吸附特征为各种阴离子物种对Pt催化的ORR动力学表面中毒提供了基本的见识。特别,独特的纳米电子方法可实现阴离子吸附的高度灵敏表征,并为从基本角度解决实际中毒问题(痕量污染)开辟了一条有效途径。通过确定的纳米电子指标,我们进一步证明,合理设计的竞争性阴离子吸附可提供改善的抗中毒性,从而提高能量转换装置的性能(活性和寿命)。
更新日期:2018-04-25
down
wechat
bug