当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-electron transport through stabilised silicon nanocrystals†
Nanoscale ( IF 5.8 ) Pub Date : 2018-04-20 00:00:00 , DOI: 10.1039/c8nr01552j
Tuhin Shuvra Basu 1, 2, 3, 4 , Simon Diesch 1, 2, 3, 4 , Elke Scheer 1, 2, 3, 4
Affiliation  

We have fabricated organically capped stable luminescent silicon nanocrystals with narrow size distribution by a novel, high yield and easy to implement technique. We demonstrate transport measurements of individual silicon nanocrystals by scanning tunnelling microscopy at a low temperature in a double-barrier tunnel junction arrangement in which we observed pronounced single electron tunnelling effects. The tunnelling spectroscopy of these nanocrystals with different diameters reveals quantum confinement induced bandgap modifications. Furthermore, from the features in the tunnelling spectra, we differentiate several energy contributions arising from electronic interactions inside the nanocrystal. By applying a magnetic field, we have detected a variation in the differential conductance profile that we attribute to arising from higher order tunnelling processes. We have also systematically simulated our experimental data with the Orthodox theory, and the results show good agreement with the experiment. The study establishes a correlation between the nanocrystal size and quantum confinement induced band-structure modifications which will pave the way to devise tailored nanocrystals.

中文翻译:

单电子传输通过稳定的硅纳米晶体

我们已经通过新颖,高产量且易于实施的技术制备了具有窄尺寸分布的有机封端的稳定发光硅纳米晶体。我们通过扫描隧道显微镜在双势垒隧道结安排中在低温下观察到明显的单电子隧道效应,证明了单个硅纳米晶体的传输测量。这些具有不同直径的纳米晶体的隧道光谱揭示了量子限制引起的带隙修饰。此外,根据隧道光谱的特征,我们区分了纳米晶体内部电子相互作用产生的几种能量贡献。通过施加磁场,我们已经检测到微分电导曲线的变化,这归因于更高阶的隧穿过程。我们还使用正统理论对我们的实验数据进行了系统仿真,结果表明与实验吻合良好。这项研究建立了纳米晶体尺寸与量子限制引起的能带结构修饰之间的相关性,这将为设计定制的纳米晶体铺平道路。
更新日期:2018-04-20
down
wechat
bug