当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shape‐Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed
Advanced Materials ( IF 29.4 ) Pub Date : 2018-04-14 , DOI: 10.1002/adma.201706312
Kyle D. Gilroy 1 , Xuan Yang 1 , Shuifen Xie 1 , Ming Zhao 2 , Dong Qin 3 , Younan Xia 1, 2, 4
Affiliation  

Controlling the surface structure of metal nanocrystals while maximizing the utilization efficiency of the atoms is a subject of great importance. An emerging strategy that has captured the attention of many research groups involves the conformal deposition of one metal as an ultrathin shell (typically 1–6 atomic layers) onto the surface of a seed made of another metal and covered by a set of well‐defined facets. This approach forces the deposited metal to faithfully replicate the surface atomic structure of the seed while at the same time serving to minimize the usage of the deposited metal. Here, the recent progress in this area is discussed and analyzed by focusing on the synthetic and mechanistic requisites necessary for achieving surface atomic replication of precious metals. Other related methods are discussed, including the one‐pot synthesis, electrochemical deposition, and skin‐layer formation through thermal annealing. To close, some of the synergies that arise when the thickness of the deposited shell is decreased controllably down to a few atomic layers are highlighted, along with how the control of thickness can be used to uncover the optimal physicochemical properties necessary for boosting the performance toward a range of catalytic reactions.

中文翻译:

复制种子表面原子结构的胶体金属纳米晶体的形状控制合成

控制金属纳米晶体的表面结构同时最大化原子的利用效率是非常重要的主题。引起许多研究小组注意的一种新兴策略涉及将一种金属作为超薄壳(通常为1至6个原子层)的保形沉积在另一种金属制成的种子表面上,并被一组定义明确的表面覆盖方面。该方法迫使沉积的金属忠实地复制种子的表面原子结构,同时用于使沉积的金属的使用最小化。在此,通过关注实现贵金属表面原子复制所必需的合成和机械要求,来讨论和分析该领域的最新进展。讨论了其他相关方法,包括一锅法合成,电化学沉积和通过热退火形成表皮层。最后,强调了当可沉积的壳的厚度可控地减小到几个原子层时产生的一些协同作用,以及如何利用厚度的控制来揭示最佳的理化性质,以提高性能。一系列的催化反应。
更新日期:2018-04-14
down
wechat
bug