当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ba5Ta4O15 Nanosheet/AgVO3 Nanoribbon Heterojunctions with Enhanced Photocatalytic Oxidation Performance: Hole Dominated Charge Transfer Path and Plasmonic Effect Insight
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-04-12 00:00:00 , DOI: 10.1021/acssuschemeng.8b00477
Kai Wang 1 , Xiaoyong Wu 1 , Gaoke Zhang 1, 2 , Jun Li 1 , Yuan Li 1
Affiliation  

Heterojunction photocatalysts for environmental pollutant removal have attracted great attention because of their excellent photocatalytic efficiency. In this study, we report a novel Ba5Ta4O15/AgVO3 heterojunction photocatalyst with excellent photocatalytic activity, which was synthesized by a facile, two-step, self-assembly strategy. Transmission electron microscopy (TEM) reveals that Ba5Ta4O15 nanosheets adhered to the surface of AgVO3 nanoribbons to form Ba5Ta4O15/AgVO3 heterojunctions. The as-obtained photocatalysts exhibited enhanced photocatalytic activities for Acid Red G (ARG) degradation, which are almost 2.7 times higher than that of AgVO3. The trapping experiments, electrochemical and electron paramagnetic resonance analyses altogether indicate that the enhanced photocatalytic performance could be attributed to the synergy effect of the hole dominated charge transform path and localized surface plasmon resonance (LSPR). Finally, a possible photocatalytic mechanism of the photocatalytic progress was discussed. This study might provide a novel strategy toward designing highly efficient heterojunction photocatalyst systems for pollutant degradation and environmental remediation.

中文翻译:

具有增强的光催化氧化性能的Ba 5 Ta 4 O 15纳米片/ AgVO 3纳米带异质结:空穴主导的电荷转移路径和等离子效应研究

用于去除环境污染物的异质结光催化剂因其优异的光催化效率而备受关注。在这项研究中,我们报告了一种新颖的Ba 5 Ta 4 O 15 / AgVO 3异质结光催化剂,该光催化剂具有出色的光催化活性,它是通过一种简便的两步自组装策略合成的。透射电子显微镜(TEM)表明Ba 5 Ta 4 O 15纳米片粘附在AgVO 3纳米带的表面上,形成Ba 5 Ta 4 O 15 / AgVO 3异质结。所获得的光催化剂显示出对酸性红G(ARG)降解的增强的光催化活性,其活性几乎是AgVO 3的2.7倍。俘获实验,电化学和电子顺磁共振分析一起表明,增强的光催化性能可以归因于空穴主导的电荷转换路径和局部表面等离子体激元共振(LSPR)的协同效应。最后,讨论了光催化进展的可能的光催化机理。这项研究可能为设计用于污染物降解和环境修复的高效异质结光催化剂系统提供一种新颖的策略。
更新日期:2018-04-12
down
wechat
bug