当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Functional integration and self-template synthesis of hollow core–shell carbon mesoporous spheres/Fe3O4/nitrogen-doped graphene to enhance catalytic activity in DSSCs†
Nanoscale ( IF 6.7 ) Pub Date : 2018-04-11 00:00:00 , DOI: 10.1039/c8nr01095a
Jixin Yao 1, 2, 3, 4 , Kang Zhang 1, 2, 3, 4 , Wen Wang 1, 2, 3, 4 , Xueqin Zuo 1, 2, 3, 4 , Qun Yang 1, 2, 3, 4 , Huaibao Tang 1, 2, 3, 4, 5 , Mingzai Wu 1, 2, 3, 4, 5 , Guang Li 1, 2, 3, 4, 5
Affiliation  

Excellent corrosion resistance is crucial for photovoltaic devices to acquire high and stable performance under high corrosive complicated environments. Creative inspiration comes from sandwich construction, whereby Fe3O4 nanoparticles were anchored onto hollow core–shell carbon mesoporous microspheres and wrapped by N-graphene nanosheets (HCCMS/Fe3O4@N-RGO) to obtain integrated high corrosive resistance and stability. The as-prepared multiple composite material possesses outstanding performance as a result of structure optimization, performance improvement, and interface synergy. Therefore, it can effectively suppress corrosion from the electrolyte in recycled tests many times, indicating the ultrahigh corrosion resistance life of this double carbon-based nanocomposite. Furthermore, the electrical conductivity and conversion efficiency of the composite are well maintained due to the triple synergistic interactions, which could serve as a guideline in establishing high-performance multifunctional HCCMS/Fe3O4@N-RGO with great prospects in energy devices, such as lithium batteries, supercapacitors and electrode materials, etc.

中文翻译:

空心壳碳介孔球/ Fe 3 O 4 /氮掺杂石墨烯的功能集成和自模板合成,以增强DSSC中的催化活性

出色的耐腐蚀性对于光伏设备在高腐蚀性复杂环境中获得高而稳定的性能至关重要。创意灵感来自三明治结构,其中Fe 3 O 4纳米颗粒被锚固在中空核壳碳介孔微球上,并被N-石墨烯纳米片包裹(HCCMS / Fe 3 O 4@ N-RGO),以获得综合的高耐腐蚀性和稳定性。由于结构优化,性能改进和界面协同作用,所制备的多种复合材料具有出色的性能。因此,在多次循环测试中,它可以有效地抑制电解质的腐蚀,这表明这种双碳基纳米复合材料具有超高的耐腐蚀寿命。此外,由于三重协同作用,复合材料的电导率和转化效率得到了很好的维持,可以作为建立高性能多功能HCCMS / Fe 3 O 4 @ N-RGO的指南,在能源装置中具有广阔的前景,例如锂电池,超级电容器和电极材料,
更新日期:2018-04-11
down
wechat
bug