当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polymer-assisted chemical solution synthesis of La0.8Sr0.2MnO3-based perovskite with A-site deficiency and cobalt-doping for bifunctional oxygen catalyst in alkaline media
Electrochimica Acta ( IF 6.6 ) Pub Date : 2018-04-07
Weichuan Xu, Litao Yan, Lara Teich, Steven Liaw, Meng Zhou, Hongmei Luo

The polymer-assisted chemical solution (PACS) method was used for the synthesis of La0.8Sr0.2MnO3 (LSM)-based perovskite catalyst network with nanoparticle size of 30–80 nm to enhance oxygen evolution reaction (OER) activity and maintain highly active oxygen reduction reaction (ORR). Samples investigated include the A-site cation deficient (La0.8Sr0.2)0.95MnO3-δ (ALSM) and the A-site cation deficient with the B-site cobalt-doped (La0.8Sr0.2)1-xMn1-xCoxO3-δ (x = 0.05 and 0.1 for LSMC5 and LSMC10, respectively). X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) aided in physical characterizations. Electrochemical properties were tested in 0.1 M KOH solution by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Our results indicate as compared to LSM, the lattice-shrunk ALSM with high oxygen vacancy displays enhanced OER performance, but its inferior ORR activity could be caused by reduced crystallinity. LSMC5 and LSMC10 show lowest total overpotential (0.93 and 0.91 V vs. Ag/AgCl (3.5 M)) with slightly less efficient ORR, despite their superior specific kinetic current density. Oxygen vacancy induces Fermi level upshift and reduced resistivity, while Co-doping increases orbital hybridization and enhances charge transfer. Understanding how the A-site non-stoichiometry and the B-site doping influence the B

O covalence is the key to the rational design of perovskite bifunctional oxygen catalysts.


中文翻译:

碱性介质中双功能氧催化剂的聚合物辅助化学溶液合成A位缺陷和钴掺杂的La 0.8 Sr 0.2 MnO 3基钙钛矿

聚合物辅助化学溶液(PACS)方法用于合成La 0.8 Sr 0.2 MnO 3(LSM)基钙钛矿催化剂网络,其纳米颗粒尺寸为30-80 nm,以增强氧释放反应(OER)活性并保持高水平活性氧还原反应(ORR)。样品调查了包括A位阳离子缺陷(LA 0.80.20.95的MnO 3-δ(ALSM)中,用B位钴掺杂A位阳离子缺陷(LA 0.80.21-x的Mn 1- x Co x O3 (对于LSMC5和LSMC10,x分别为0.05和0.1)。X射线衍射(XRD),透射电子显微镜(TEM)和X射线光电子能谱(XPS)有助于物理表征。通过循环伏安法(CV),线性扫描伏安法(LSV)和电化学阻抗谱(EIS)在0.1 M KOH溶液中测试电化学性能。我们的结果表明,与LSM相比,具有高氧空位的晶格收缩ALSM表现出增强的OER性能,但其ORR活性较差的原因可能是结晶度降低。LSMC5和LSMC10显示最低的总超电势(0.93和0.91 V VS。Ag / AgCl(3.5 M)),尽管其比动电流密度更高,但ORR效率略低。氧空位引起费米能级上移并降低了电阻率,而共掺杂增加了轨道杂交并增强了电荷转移。了解A位非化学计量和B位掺杂如何影响B

共价是钙钛矿双功能氧催化剂合理设计的关键。
更新日期:2018-04-08
down
wechat
bug