当前位置: X-MOL 学术Anal. Bioanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physicochemical study of natural fractionated biocolloid by asymmetric flow field-flow fractionation in tandem with various complementary techniques using biologically synthesized silver nanocomposites
Analytical and Bioanalytical Chemistry ( IF 3.8 ) Pub Date : 2018-04-03 , DOI: 10.1007/s00216-018-0967-0
Viorica Railean-Plugaru , Pawel Pomastowski , Tomasz Kowalkowski , Myroslav Sprynskyy , Boguslaw Buszewski

Asymmetric flow field-flow fractionation coupled with use of ultraviolet–visible, multiangle light scattering (MALLS), and dynamic light scattering (DLS) detectors was used for separation and characterization of biologically synthesized silver composites in two liquid compositions. Moreover, to supplement the DLS/MALLS information, various complementary techniques such as transmission electron spectroscopy, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used. The hydrodynamic diameter and the radius of gyration of silver composites were slightly larger than the sizes obtained by transmission electron microscopy (TEM). Moreover, the TEM results revealed the presence of silver clusters and even several morphologies, including multitwinned. Additionally, MALDI-TOF MS examination showed that the particles have an uncommon cluster structure. It can be described as being composed of two or more silver clusters. The organic surface of the nanoparticles can modify their dispersion. We demonstrated that the variation of the silver surface coating directly influenced the migration rate of biologically synthesized silver composites. Moreover, this study proves that the fractionation mechanism of silver biocolloids relies not only on the particle size but also on the type and mass of the surface coatings. Because silver nanoparticles typically have size-dependent cytotoxicity, this behavior is particularly relevant for biomedical applications.

Open image in new windowGraphical abstract
Graphical abstract

Workflow for asymmetric flow field-flow fractionation of natural biologically synthesized silver nanocomposites



中文翻译:

通过生物合成的银纳米复合材料的各种互补技术,通过不对称流场-流分离串联分离自然分离的生物胶体的理化研究

非对称流场流分馏技术与紫外可见光,多角度光散射(MALLS)和动态光散射(DLS)检测器结合使用,用于分离和表征两种液体组合物中的生物合成银复合材料。此外,为了补充DLS / MALLS信息,还使用了各种补充技术,例如透射电子光谱,傅里叶变换红外光谱和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)。银复合材料的流体动力学直径和回转半径略大于通过透射电子显微镜(TEM)获得的尺寸。此外,TEM结果揭示了银簇的存在,甚至还有几种形态,包括多重孪晶。此外,MALDI-TOF MS检查显示颗粒具有不常见的团簇结构。它可以描述为由两个或多个银簇组成。纳米颗粒的有机表面可以改变其分散性。我们证明了银表面涂层的变化直接影响生物合成的银复合材料的迁移速率。此外,这项研究证明,银生物胶体的分馏机理不仅取决于颗粒大小,还取决于表面涂层的类型和质量。因为银纳米颗粒通常具有大小依赖性的细胞毒性,所以这种行为与生物医学应用特别相关。纳米颗粒的有机表面可以改变其分散性。我们证明了银表面涂层的变化直接影响生物合成的银复合材料的迁移速率。此外,这项研究证明,银生物胶体的分馏机理不仅取决于颗粒大小,还取决于表面涂层的类型和质量。因为银纳米颗粒通常具有大小依赖性的细胞毒性,所以这种行为与生物医学应用特别相关。纳米颗粒的有机表面可以改变其分散性。我们证明了银表面涂层的变化直接影响生物合成的银复合材料的迁移速率。此外,这项研究证明,银生物胶体的分馏机理不仅取决于颗粒大小,还取决于表面涂层的类型和质量。因为银纳米颗粒通常具有大小依赖性的细胞毒性,所以这种行为与生物医学应用特别相关。这项研究证明,银生物胶体的分馏机理不仅取决于颗粒大小,还取决于表面涂层的类型和质量。因为银纳米颗粒通常具有大小依赖性的细胞毒性,所以这种行为与生物医学应用特别相关。这项研究证明,银生物胶体的分馏机理不仅取决于颗粒大小,还取决于表面涂层的类型和质量。因为银纳米颗粒通常具有大小依赖性的细胞毒性,所以这种行为与生物医学应用特别相关。

在新窗口中打开图像图形概要
图形概要

天然生物合成银纳米复合材料非对称流场-流分馏的工作流程

更新日期:2018-04-03
down
wechat
bug