当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dramatically enhanced strain- and moisture-sensitivity of bioinspired fragmentized carbon architectures regulated by cellulose nanocrystals
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2018-04-03 , DOI: 10.1016/j.cej.2018.04.003
Huaquan Wang , Hongsheng Luo , Huankai Zhou , Xingdong Zhou , XinXing Zhang , Wenjing Lin , Guobin Yi , Yihang Zhang

Although flexible conductive polymeric sensors responding to different stimulus have been extensively explored, it remains challenge to integrate high multi-stimuli sensitivity into one material. Herein, novel electromechanical sensors were fabricated, exhibiting dramatically enhanced strain- and water/moisture-sensitivity. The hybridized nano carbons of graphene and carbon nanotubes (CNTs) were regulated with cellulose nanocrystals (CNCs), followed by embedding into the polymeric elastomer via transfer process. The CNCs not only fragmentized the electromechanical networks under external stress, but also amplified the swelling effect on the conductivity variation as exposed upon water/moisture due to the mechanical reinforcement and amphiphilic nature. Micro/nano cracks were generated on the conductive surface layer, enabling dramatic enhancement on the sensitivity and reversibility in the strain sensing. The gauge factor was up to 1129 within 20% of the strain, which was higher by 182 times compared to that of the control sample without the CNCs content. Moreover, the electromechanical sensors improved the water/moisture sensing whose sensitivity was enhanced by 65 times due to the micro/nano cracks in the fragmentized carbon architecture. The findings extend the application of natural cellulose to exploit multi-stimuli responsive electronics and provide a facial strategy to optimize the sensory performance, which may greatly benefit the developments of the flexible and wearable electronics.



中文翻译:

受到纤维素纳米晶体调控的生物启发的片段化碳结构的应变敏感性和水分敏感性显着提高

尽管已经广泛探索了响应不同刺激的柔性导电聚合物传感器,但是将高多重刺激灵敏度集成到一种材料中仍然是挑战。本文中,制造了新颖的机电传感器,其表现出显着增强的应变和水/湿敏性。石墨烯和碳纳米管(CNTs)的杂化纳米碳被纤维素纳米晶体(CNCs)调节,然后通过转移过程嵌入到聚合物弹性体中。CNCs不仅使外部应力作用下的机电网络破碎,而且由于机械增强和两亲性质而暴露于水/水分中,从而扩大了对电导率变化的溶胀效应。在导电表面层上产生了微/纳米裂纹,大大提高了应变传感的灵敏度和可逆性。在应变的20%范围内,应变系数高达1129,比不含CNCs的对照样品的应变系数高182倍。此外,由于碎片化碳结构中的微/纳米裂纹,机电传感器改善了水/湿度感测,其灵敏度提高了65倍。这些发现扩展了天然纤维素在多刺激响应电子学中的应用,并提供了一种优化感官性能的面部策略,这可能极大地有益于柔性和可穿戴电子学的发展。与不含CNCs的对照样品相比,它的含量高182倍。此外,由于碎片化碳结构中的微/纳米裂纹,机电传感器改善了水/湿度感测,其灵敏度提高了65倍。这些发现扩展了天然纤维素在多刺激响应电子学中的应用,并提供了一种优化感官性能的面部策略,这可能极大地有益于柔性和可穿戴电子学的发展。与不含CNCs的对照样品相比,它的含量高182倍。此外,由于碎片化碳结构中的微/纳米裂纹,机电传感器改善了水/湿度感测,其灵敏度提高了65倍。这些发现扩展了天然纤维素在多刺激响应电子学中的应用,并提供了一种优化感官性能的面部策略,这可能极大地有益于柔性和可穿戴电子学的发展。

更新日期:2018-04-03
down
wechat
bug