当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes
Nature Chemistry ( IF 19.2 ) Pub Date : 2018-04-02 , DOI: 10.1038/s41557-018-0019-6
Seoung-Bum Son , Tao Gao , Steve P. Harvey , K. Xerxes Steirer , Adam Stokes , Andrew Norman , Chunsheng Wang , Arthur Cresce , Kang Xu , Chunmei Ban

Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.



中文翻译:

人工界面可实现碳酸盐电解质中的可逆镁化学反应

镁电池比锂电池具有潜在的优势。但是,可逆的镁化学性质需要低电位的热力学稳定的电解质,这通常是使用腐蚀性成分并以抗氧化的稳定性为代价的。在锂离子电池中,电解质的阴极和阳极稳定性之间的冲突通过形成保护电解质不被还原的阳极中间相来解决。该策略不能应用于Mg电池,因为二价Mg 2+不能穿透这种界面。在这里,我们设计了人工镁2+-镁阳极表面上的导电相,成功地将电解质的阳极和阴极要求分离开来,并证明了抗氧化电解质中镁的化学可逆性高。人造中间相可以使Mg / V 2 O 5全电池在含水的碳酸盐基电解质中发生可逆循环。这种方法不仅为镁提供了一条新途径,也为面临相同问题的其他多价阳离子电池提供了一条新途径,朝着将其应用于储能应用迈出了一步。

更新日期:2018-04-03
down
wechat
bug