当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane†
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2018-03-28 00:00:00 , DOI: 10.1039/c8ee00645h
Dong Ding 1, 2, 3 , Yunya Zhang 1, 2, 3 , Wei Wu 1, 2, 3 , Dongchang Chen 3, 4, 5 , Meilin Liu 3, 4, 5 , Ting He 1, 2, 3
Affiliation  

The oversupply of ethane, a major component of natural gas liquids, has stimulated the wide applications of ethylene since the shale gas revolution. However, ethylene production is energy-intensive and represents the most energy-consuming single process in the chemical industry. In this communication, we report, for the first time, a novel low-thermal-budget process for the co-production of ethylene and pure hydrogen using a proton-conducting electrochemical deprotonation cell. At a constant current density of 1 A cm−2, corresponding to a hydrogen production rate of 0.448 mol cm−2 per day, and 400 °C, a close to 100% ethylene selectivity was achieved under an electrochemical overpotential of 140 mV. Compared to an industrial ethane steam cracker, the electrochemical deprotonation process can achieve a 65% saving in process energy and reduce the carbon footprint by as much as 72% or even more if renewable electricity and heat are used. If the heating value of produced hydrogen is taken into account, the electrochemical deprotonation process actually has a net gain in processing energy. The electrochemical deprotonation process at reduced temperatures in the present study provides a disruptive approach for petrochemical manufacturing, shifting the paradigm from thermal chemical practice to a clean energy regime.

中文翻译:

用于联合生产的乙烯和氢的一种新型的低导热预算方法通过乙烷的电化学非氧化脱质子

自页岩气革命以来,乙烷(天然气液体的主要成分)的供过于求刺激了乙烯的广泛应用。但是,乙烯生产耗能大,代表了化学工业中最耗能的单个过程。在本次交流中,我们首次报告了使用质子传导电化学去质子化电池联产乙烯和纯氢的新型低热预算工艺。在1 A cm -2的恒定电流密度下,对应于0.448 mol cm -2的氢气产生速率每天在400°C的温度下,在140 mV的电化学超电势下,乙烯选择性接近100%。与工业乙烷蒸汽裂化炉相比,电化学去质子化工艺可以节省65%的过程能源,并且如果使用可再生的电能和热量,则可减少多达72%的碳足迹,甚至更多。如果考虑所产生的氢的热值,则电化学去质子化过程实际上在处理能量上具有净收益。在本研究中,低温下的电化学去质子化过程为石化生产提供了一种破坏性方法,将范式从热化学实践转变为清洁能源。
更新日期:2018-03-28
down
wechat
bug