当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Brain-wide 3D light-field imaging of neuronal activity with speckle-enhanced resolution
Optica ( IF 8.4 ) Pub Date : 2018-03-27 , DOI: 10.1364/optica.5.000345
Michael A. Taylor , Tobias Nöbauer , Alejandro Pernia-Andrade , Friederike Schlumm , Alipasha Vaziri

A major challenge in neuroscience is to sample large-scale neuronal activity at high speed and resolution. While calcium (Ca2+) imaging allows high-resolution optical read-out of neuronal activity, it remains challenging to sample large-scale activity at high speed, as most available imaging microscopes provide a trade-off between speed and the size of the acquisition volume. One promising method that avoids the trade-off between the acquisition rate and volume size is light-field microscopy in which the full 3D profile of an object is imaged simultaneously, thereby offering high speed at the cost of reduced spatial resolution. Here we introduce speckle light-field microscopy (speckle LFM), which utilizes speckle-based structured illumination to enhance spatial resolution. Using speckle LFM we demonstrate brain-wide recording of neuronal activity in larval zebrafish at 10 Hz volume rate and at 1.4 times higher resolution compared to conventional light-field microscopy and with suppressed background fluorescence. In addition to improving resolution of spatial structure, we show that the increased resolution reduces spurious signal crosstalk between neighboring neurons.

中文翻译:

具有斑点增强分辨率的神经元活动的全脑3D光场成像

神经科学的一个主要挑战是以高速和高分辨率对大规模神经元活动进行采样。而钙(2个+)成像可对神经元活动进行高分辨率的光学读出,由于大多数可用的成像显微镜都在速度和采集体积的大小之间进行了权衡,因此高速采集大规模活动仍然具有挑战性。一种避免采集速率和体积大小之间取舍的有前途的方法是光场显微镜,其中可以同时对物体的完整3D轮廓进行成像,从而以降低空间分辨率为代价提供高速成像。在这里,我们介绍了散斑光场显微镜(散斑LFM),它利用基于散斑的结构化照明来提高空间分辨率。使用散斑LFM,我们证明了以10 Hz的体积频率和1的频率在全脑记录幼虫斑马鱼的神经元活动 分辨率是传统光场显微镜的4倍,并且背景荧光得到抑制。除了提高空间结构的分辨率外,我们还表明提高的分辨率还可以减少相邻神经元之间的虚假信号串扰。
更新日期:2018-04-23
down
wechat
bug