当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/Carbon heterostructures for enhanced catalytic H2 production
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2018-03-22 , DOI: 10.1016/j.apcatb.2018.03.073
Na Lu , Zhenyi Zhang , Yue Wang , Benkang Liu , Lijiao Guo , Li Wang , Jindou Huang , Kuichao Liu , Bin Dong

Plasmonic nanostructures have received significant attention in the field of solar-to-fuels conversion, because they can collect and utilize abundant low-energy photons to generate high-energy hot electrons for producing green chemical fuels. However, the ultrafast relaxation process of hot electron often leads to poor quantum yields of plasmonic nanostructures. Herein, we construct the one-dimensional W18O49/Carbon heterostructure for employing low-cost electrospun carbon fibers as the “electron mediator” to hinder the relaxation of hot electron in plasmonic W18O49 nanowires. We confirm that the IR-excited plasmonic hot electrons in W18O49 nanowires can quickly transfer to carbon fibers within only ∼50 fs in the W18O49/C heterostructure. This kinetics time is much shorter than the relaxation time of these hot electrons from high-energy surface plasmon (SP) to the ground state in W18O49 nanowires (∼5.5 ps). As a result, upon low-energy IR-light excitation, the W18O49/C heterostructures exhibit nearly 2-fold enhancement on the catalytic H2 production from ammonia borane as compared to single W18O49 nanowires. Wavelength-dependent catalytic tests further indicate that this plasmon-enhanced catalytic activity is induced by the ultrafast transport process of plasmonic hot electron due to the localized surface plasmon resonance.



中文翻译:

红外驱动的热电子在无金属等离子W 18 O 49 /碳异质结构中增强催化H 2产生的直接证据

等离子体纳米结构在太阳能转化为燃料方面受到了广泛的关注,因为它们可以收集和利用丰富的低能光子来产生高能热电子,从而生产绿色化学燃料。但是,热电子的超快弛豫过程通常会导致等离激元纳米结构的量子产率差。在这里,我们构造一维W 18 O 49 /碳异质结构,以采用低成本的电纺碳纤维作为“电子介体”,以阻止热电子在等离激元W 18 O 49纳米线中的弛豫。我们确认W 18 O 49中的IR激发等离子体热电子在W 18 O 49 / C异质结构中,纳米线可以在仅约50 fs的时间内快速转移到碳纤维。此动力学时间比W 18 O 49纳米线中这些热电子从高能表面等离子体激元(SP)到基态的弛豫时间短得多(〜5.5 ps)。结果,在低能量的红外光激发下,与单个W 18 O 49相比,W 18 O 49 / C异质结构显示出从氨硼烷生产的催化H 2几乎提高了2倍。纳米线。依赖于波长的催化测试进一步表明,由于局部表面等离子体激元共振,等离子体激元热电子的超快速传输过程诱导了这种等离子体激元增强的催化活性。

更新日期:2018-03-22
down
wechat
bug