当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface tension-assisted additive manufacturing.
Nature Communications ( IF 14.7 ) Pub Date : 2018-03-22 , DOI: 10.1038/s41467-018-03391-w
Héloïse Ragelle , Mark W. Tibbitt , Shang-Yun Wu , Michael A. Castillo , George Z. Cheng , Sidharta P. Gangadharan , Daniel G. Anderson , Michael J. Cima , Robert Langer

The proliferation of computer-aided design and additive manufacturing enables on-demand fabrication of complex, three-dimensional structures. However, combining the versatility of cell-laden hydrogels within the 3D printing process remains a challenge. Herein, we describe a facile and versatile method that integrates polymer networks (including hydrogels) with 3D-printed mechanical supports to fabricate multicomponent (bio)materials. The approach exploits surface tension to coat fenestrated surfaces with suspended liquid films that can be transformed into solid films. The operating parameters for the process are determined using a physical model, and complex geometric structures are successfully fabricated. We engineer, by tailoring the window geometry, scaffolds with anisotropic mechanical properties that compress longitudinally (~30% strain) without damaging the hydrogel coating. Finally, the process is amenable to high cell density encapsulation and co-culture. Viability (>95%) was maintained 28 days after encapsulation. This general approach can generate biocompatible, macroscale devices with structural integrity and anisotropic mechanical properties.

中文翻译:

表面张力辅助的增材制造。

计算机辅助设计和增材制造的激增使得可以按需制造复杂的三维结构。然而,将充满细胞的水凝胶的多功能性结合到3D打印过程中仍然是一个挑战。在本文中,我们描述了一种简便且通用的方法,该方法将聚合物网络(包括水凝胶)与3D打印的机械支架集成在一起,以制造多组分(生物)材料。该方法利用表面张力在悬浮窗表面覆盖悬浮的液膜,该液膜可转变为固体膜。使用物理模型确定该过程的操作参数,并成功地制造出复杂的几何结构。我们通过定制窗口的几何形状来进行工程设计,具有各向异性机械性能的支架,可在不损坏水凝胶涂层的情况下纵向压缩(约30%应变)。最后,该方法适合于高细胞密度的封装和共培养。包封后28天维持存活率(> 95%)。这种通用方法可以生成具有结构完整性和各向异性机械性能的生物相容的大型设备。
更新日期:2018-03-22
down
wechat
bug