当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrafast Dynamics of Polariton Cooling and Renormalization in an Organic Single-Crystal Microcavity under Nonresonant Pumping
ACS Photonics ( IF 7 ) Pub Date : 2018-03-21 00:00:00 , DOI: 10.1021/acsphotonics.8b00041
Kenichi Yamashita 1, 2 , Uyen Huynh 1 , Johannes Richter 1 , Lissa Eyre 1 , Felix Deschler 1 , Akshay Rao 1 , Kaname Goto 2 , Takumi Nishimura 2 , Takeshi Yamao 3 , Shu Hotta 3 , Hisao Yanagi 4 , Masaaki Nakayama 5 , Richard H. Friend 1
Affiliation  

Microcavity systems with organic luminescent materials have a hot prospect for room-temperature cavity-polariton devices. The polariton dispersion relation of organic microcavities is significantly different from that of inorganic microcavities due to the strong localization of Frenkel excitons. Also photoexcited particles will undergo a different cooling mechanism until they reach the polariton ground state. In the characterization of efficient polariton condensates, therefore, the polariton cooling dynamics as well as the kinetics of the polariton eigenstate should be measured. Here we present experimental studies on ultrafast dynamics of cavity polaritons in an organic single-crystal microcavity under nonresonant pumping. In time-resolved photoluminescence measurements we observed, for the first time, an ultrafast dynamics of stimulated cooling of the organic cavity polariton. Transient transmission measurement enabled us to investigate the detailed renormalization dynamics of the polariton eigenstate. The results clearly demonstrated the prospect of organic microcavities for room-temperature polaritonic devices.

中文翻译:

非共振泵浦下有机单晶微腔中极化冷却和归一化的超快动力学

具有有机发光材料的微腔系统对于室温腔极化器件具有广阔的前景。由于弗伦克尔激子的强局部性,有机微腔的极化子分散关系与无机微腔的极化子分散关系显着不同。同样,光激发的粒子将经历不同的冷却机制,直到它们达到极化子基态。因此,在表征有效极化子冷凝物时,应测量极化子冷却动力学以及极化子本征态的动力学。在这里,我们介绍了在非共振泵浦下有机单晶微腔中腔极化子的超快速动力学的实验研究。在时间分辨的光致发光测量中,我们首次观察到 超快的动力学激发了有机腔极化的冷却。瞬态透射测量使我们能够研究极化子本征态的详细归一化动力学。结果清楚地证明了有机微腔在室温极化装置中的应用前景。
更新日期:2018-03-21
down
wechat
bug