当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
Nature ( IF 50.5 ) Pub Date : 2018-03-01 , DOI: 10.1038/nature25989
Mojtaba Abdi-Jalebi 1 , Zahra Andaji-Garmaroudi 1 , Stefania Cacovich 2 , Camille Stavrakas 1 , Bertrand Philippe 3 , Johannes M Richter 1 , Mejd Alsari 1 , Edward P Booker 1 , Eline M Hutter 4 , Andrew J Pearson 1 , Samuele Lilliu 5, 6 , Tom J Savenije 4 , Håkan Rensmo 3 , Giorgio Divitini 2 , Caterina Ducati 2 , Richard H Friend 1 , Samuel D Stranks 1
Affiliation  

Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.

中文翻译:

钾钝化使卤化物钙钛矿的发光最大化和稳定

金属卤化物钙钛矿在各种高性能光电应用中备受关注。通过改变化学成分来连续调节钙钛矿带隙的能力开辟了钙钛矿作为有色发射体、建筑集成光伏以及作为串联光伏组件以提高功率转换效率的应用。然而,性能受到非辐射损失的限制,在标准太阳光照条件下,最先进的钙钛矿太阳能电池的发光产率仍远未达到 100%。此外,在设计用于连续带隙可调性(带隙约为 1.7 至 1.9 电子伏特)的混合卤化物钙钛矿系统中,光致离子分离会导致带隙不稳定性。在这里,我们展示了通过用钝化卤化钾层装饰表面和晶界,显着减轻钙钛矿薄膜和界面中的非辐射损失和光致离子迁移。我们展示了 66% 的外部光致发光量子产率,这转化为超过 95% 的内部产率。实现了高发光率,同时保持了每秒每伏特 40 平方厘米以上的高迁移率,实现了高发光和出色电荷传输的难以捉摸的结合。当与太阳能电池设备堆栈中的电极连接时,外部发光产额——必须最大化以获得高效率的数量——仍然高达 15%,表明界面非常干净。我们还证明了在未钝化时表现出带隙不稳定性的材料中对各种混合卤化物钙钛矿带隙的瞬态光诱导离子迁移过程的抑制。我们在完全运行的太阳能电池中验证了这些结果。我们的工作代表了构建可调谐金属卤化物钙钛矿薄膜和界面的重要进展,这些薄膜和界面可以接近串联太阳能电池、彩色发光二极管和其他光电应用的效率极限。
更新日期:2018-03-01
down
wechat
bug