当前位置: X-MOL 学术Nat. Clim. Change › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methane production as key to the greenhouse gas budget of thawing permafrost
Nature Climate Change ( IF 29.6 ) Pub Date : 2018-03-19 , DOI: 10.1038/s41558-018-0095-z
Christian Knoblauch , Christian Beer , Susanne Liebner , Mikhail N. Grigoriev , Eva-Maria Pfeiffer

Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change1,2. Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils3,4,5,6 and a stronger permafrost carbon–climate feedback from drained (oxic) soils1,7. Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2–carbon equivalents (CO2–Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account8. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO2–C kgC−1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2–Ce (241 ± 138 g CO2–Ce kgC−1) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales.



中文翻译:

甲烷生产是解冻多年冻土温室气体预算的关键

多年冻土融化后释放出冻结的有机碳,该有机碳分解为二氧化碳(CO 2)和甲烷(CH 4)。这些温室气体(GHGs)的释放形成了对大气中CO 2和CH 4浓度的正反馈,并加速了气候变化1,2。目前的研究报告表明,在水饱和(缺氧)的多年冻土3,4,5,6中产生CH 4的重要性不大,而从排水(有氧)的土壤1,7产生的更强的多年冻土碳气候反馈更为重要。在这里,我们通过七年的实验室孵化展示了相等数量的CO 2和CH 4在稳定的产生CH 4的微生物群落建立之后,在缺氧条件下的永冻土层融化过程中形成了碳纳米管。少多年冻土炭在缺氧条件下矿化但更多的CO 2 -碳当量(CO 2被形成为比好氧条件下-Ce)CH时的较高的全球变暖潜能(GWP)4是考虑到8。根据观察到的分解数据校准的有机碳分解模型预测,到2100年,在有氧条件下(113±58 g CO 2 –C kgC -1(kgC,千克碳)),多年冻土碳的损失更高。作为高产量的CO 2 -Ce(241±138 g CO 2–Ce kgC -1)在缺氧条件下。这些发现挑战了从排水土壤1,7得到的更强的多年冻土碳气候反馈的观点,并强调了在与气候有关的时间尺度上,CH 4的生产对于解冻多年冻土的重要性。

更新日期:2018-03-20
down
wechat
bug