当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulations of the synthesis of boron-nitride nanostructures in a hot, high pressure gas volume†
Chemical Science ( IF 7.6 ) Pub Date : 2018-03-19 00:00:00 , DOI: 10.1039/c8sc00667a
Predrag S. Krstic 1, 2, 3, 4, 5 , Longtao Han 1, 2, 3, 4, 5 , Stephan Irle 4, 6, 7, 8 , Hiromi Nakai 9, 10, 11, 12, 13
Affiliation  

We performed nanosecond timescale computer simulations of clusterization and agglomeration processes of boron nitride (BN) nanostructures in hot, high pressure gas, starting from eleven different atomic and molecular precursor systems containing boron, nitrogen and hydrogen at various temperatures from 1500 to 6000 K. The synthesized BN nanostructures self-assemble in the form of cages, flakes, and tubes as well as amorphous structures. The simulations facilitate the analysis of chemical dynamics and we are able to predict the optimal conditions concerning temperature and chemical precursor composition for controlling the synthesis process in a high temperature gas volume, at high pressure. We identify the optimal precursor/temperature choices that lead to the nanostructures of highest quality with the highest rate of synthesis, using a novel parameter of the quality of the synthesis (PQS). Two distinct mechanisms of BN nanotube growth were found, neither of them based on the root-growth process. The simulations were performed using quantum-classical molecular dynamics (QCMD) based on the density-functional tight-binding (DFTB) quantum mechanics in conjunction with a divide-and-conquer (DC) linear scaling algorithm, as implemented in the DC-DFTB-K code, enabling the study of systems as large as 1300 atoms in canonical NVT ensembles for 1 ns time.

中文翻译:

在高温高压气体中合成氮化硼纳米结构的模拟

我们在1500至6000 K的不同温度下,从包含硼,氮和氢的11种不同的原子和分子前驱体系统开始,对热高压气体中氮化硼(BN)纳米结构的团聚和附聚过程进行了纳秒级的计算机模拟。合成的BN纳米结构以笼状,片状和管状以及无定形结构形式自组装。该模拟有助于化学动力学的分析,并且我们能够预测有关温度和化学前体组成的最佳条件,以控制高温气体量,高压下的合成过程。我们确定了最佳的前驱物/温度选择,这些选择可以导致最高质量的纳米结构和最高的合成率,使用合成质量(PQS)的新参数。发现了两种不同的BN纳米管生长机理,它们都不基于根生长过程。使用基于密度泛函紧密结合(DFTB)量子力学的量子经典分子动力学(QCMD)结合分治(DC)线性缩放算法进行了仿真,该算法在DC-DFTB中实现-K代码,可在1 ns的时间内研究规范NVT集合中多达1300个原子的系统。
更新日期:2018-03-19
down
wechat
bug