当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes.
Nature Communications ( IF 16.6 ) Pub Date : 2018-03-19 , DOI: 10.1038/s41467-018-03444-0
Tao Zhang 1 , Yang Hou 1, 2 , Volodymyr Dzhagan 3 , Zhongquan Liao 4 , Guoliang Chai 5 , Markus Löffler 6 , Davide Olianas 7 , Alberto Milani 7 , Shunqi Xu 1 , Matteo Tommasini 7 , Dietrich R T Zahn 3 , Zhikun Zheng 1 , Ehrenfried Zschech 4, 6 , Rainer Jordan 8 , Xinliang Feng 1
Affiliation  

The engineering of acetylenic carbon-rich nanostructures has great potential in many applications, such as nanoelectronics, chemical sensors, energy storage, and conversion, etc. Here we show the synthesis of acetylenic carbon-rich nanofibers via copper-surface-mediated Glaser polycondensation of 1,3,5-triethynylbenzene on a variety of conducting (e.g., copper, graphite, fluorine-doped tin oxide, and titanium) and non-conducting (e.g., Kapton, glass, and silicon dioxide) substrates. The obtained nanofibers (with optical bandgap of 2.51 eV) exhibit photocatalytic activity in photoelectrochemical cells, yielding saturated cathodic photocurrent of ca. 10 µA cm-2 (0.3-0 V vs. reversible hydrogen electrode). By incorporating thieno[3,2-b]thiophene units into the nanofibers, a redshift (ca. 100 nm) of light absorption edge and twofold of the photocurrent are achieved, rivalling those of state-of-the-art metal-free photocathodes (e.g., graphitic carbon nitride of 0.1-1 µA cm-2). This work highlights the promise of utilizing acetylenic carbon-rich materials as efficient and sustainable photocathodes for water reduction.

中文翻译:

用于活性无金属光电阴极的铜表面介导的富含乙炔碳纳米纤维的合成。

富含乙炔碳的纳米结构工程在纳米电子学、化学传感器、能量存储和转换等许多应用中具有巨大的潜力。在这里,我们展示了通过铜表面介导的格拉泽缩聚反应合成富含乙炔碳的纳米纤维。 1,3,5-三乙炔基苯在各种导电(例如铜、石墨、掺氟氧化锡和钛)和非导电(例如聚酰亚胺薄膜、玻璃和二氧化硅)基材上。所获得的纳米纤维(光学带隙为2.51 eV)在光电化学电池中表现出光催化活性,产生约100 nm的饱和阴极光电流。10 µA cm -2(0.3-0 V 对比可逆氢电极)。通过将噻吩并[3,2-b]噻吩单元纳入纳米纤维中,实现了光吸收边缘的红移(约100 nm)和两倍的光电流,可与最先进的无金属光电阴极相媲美(例如,0.1-1μA cm -2的石墨氮化碳)。这项工作凸显了利用富含乙炔碳的材料作为高效且可持续的光电阴极来减少水的前景。
更新日期:2018-03-19
down
wechat
bug