当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-atom supported on graphene grain boundary as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2019-02-01 , DOI: 10.1016/j.ces.2018.03.028
Tianwei He , Chunmei Zhang , Aijun Du

Abstract Embedding a single atom into the supported catalysts is the most effective way to maximize the catalytic efficiency, holding promise for developing low-cost electrocatalysts. Grain boundaries in graphene display unique structures and have attracted great research efforts in electronic properties, catalysis and sensors. By using density function theory (DFT) calculations, we systematically investigated the potential of a single transition metal (TM) atom (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Au, Pt) supported on the experimentally realised 558 grain boundary (GB), as a highly efficient electrocatalyst for hydrogen evolution reaction (HER). We find that the Fe, Co, Ni and V atom anchored on 558 GB can substantially tune the free energy of hydrogen adsorption to a more optimal value, especially for the V atom ( Δ G H ∗ = −0.01 eV), which is very close to, or even better than the most active Pt and MoS 2 catalysts. This feature is attributed to the charge transfer between TM atom and the adsorbed H atom, which significantly promotes the proton adsorption and the reduction of kinetics. In addition, a large number of electronic states near the Fermi level ensure efficient electron transfer. Our study may provide a new cost-effective, highly active and earth-abundant HER electrocatalyst for hydrogen production.

中文翻译:

石墨烯晶界上负载的单原子作为析氢反应的高效电催化剂

摘要 在负载型催化剂中嵌入单个原子是最大化催化效率的最有效方法,有望开发出低成本的电催化剂。石墨烯中的晶界显示出独特的结构,并在电子特性、催化和传感器方面吸引了大量研究工作。通过使用密度函数理论 (DFT) 计算,我们系统地研究了单个过渡金属 (TM) 原子(TM = Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Au , Pt) 支持在实验实现的 558 晶界 (GB) 上,作为析氢反应 (HER) 的高效电催化剂。我们发现锚定在 558 GB 上的 Fe、Co、Ni 和 V 原子可以将氢吸附的自由能显着调整到更优化的值,特别是对于 V 原子(ΔGH* = -0.01 eV),这非常接近,甚至优于最活跃的 Pt 和 MoS 2 催化剂。这一特征归因于 TM 原子​​和吸附的 H 原子之间的电荷转移,这显着促进了质子吸附和动力学的降低。此外,费米能级附近的大量电子态确保了有效的电子转移。我们的研究可能为制氢提供一种新的具有成本效益、高活性和地球丰富的 HER 电催化剂。
更新日期:2019-02-01
down
wechat
bug