当前位置: X-MOL 学术New J. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional conductive porous organic polymers based on tetrahedral polythiophene for high-performance supercapacitors†
New Journal of Chemistry ( IF 2.7 ) Pub Date : 2018-03-16 00:00:00 , DOI: 10.1039/c8nj00667a
Tao Li 1, 2, 3, 4, 5 , Wei Zhu 1, 2, 3, 4, 5 , Rui Shen 1, 2, 3, 4, 5 , Hui-Ying Wang 1, 2, 3, 4, 5 , Wei Chen 1, 2, 3, 4, 5 , Si-Jia Hao 1, 2, 3, 4, 5 , Yunxing Li 1, 2, 3, 4, 5 , Zhi-Guo Gu 1, 2, 3, 4, 5 , Zaijun Li 1, 2, 3, 4, 5
Affiliation  

Porous organic polymers have become promising electrode materials, but their low surface area and poor electrical conductivity limit their application in high-performance supercapacitors. This study reports the facile synthesis of two porous organic polymers (POP-1 and POP-2) via the condensation of tetra(4-aminophenyl)methane and 2-thenaldehyde or 2,2-bithiophene-5-carboxyaldehyde and their subsequent polymerization. The resulting porous organic polymer materials were characterized using FT-IR, 13C-NMR, X-ray single crystal diffraction, SEM, TEM and N2 adsorption–desorption measurements. This study shows that POP-2 has a diamond topological structure with a regular morphology and a wealth of pores, and a higher BET surface area (342 m2 g−1) when compared with POP-1 (260 m2 g−1). POP-2, when used as an electrode material for supercapacitors, also exhibits a much better electrochemical performance, including higher specific capacitance (332 F g−1) and better cycle stability (capacity retention rate of more than 94% after 10 000 successive cycles). These results verify that the structure and electrochemical properties of porous organic polymer materials can be effectively improved by altering the monomers. This study also provides an approach for building various porous organic polymer materials for use in high-performance supercapacitors.

中文翻译:

基于四面体聚噻吩的三维导电多孔有机聚合物,用于高性能超级电容器

多孔有机聚合物已经成为很有前途的电极材料,但是它们的低表面积和差的电导率限制了它们在高性能超级电容器中的应用。这项研究报告了通过四(4-氨基苯基)甲烷与2-乙醛或2,2-联噻吩-5-羧醛的缩合以及随后的聚合反应,轻松合成了两种多孔有机聚合物(POP-1POP-2)。所得的多孔有机聚合物材料使用FT-IR,13 C-NMR,X射线单晶衍射,SEM,TEM和N 2吸附-解吸测量进行了表征。这项研究表明POP-2具有规则的形态和丰富的孔,和一个更高的BET表面积(342米金刚石拓扑结构2-1)的情况相比POP-1(260米2-1)。POP-2用作超级电容器的电极材料时,还表现出更好的电化学性能,包括更高的比电容(332 F g -1)和更好的循环稳定性(连续1万次循环后,容量保持率超过94%)。这些结果证明,通过改变单体可以有效地改善多孔有机聚合物材料的结构和电化学性能。这项研究还为构建用于高性能超级电容器的各种多孔有机聚合物材料提供了一种方法。
更新日期:2018-03-16
down
wechat
bug