当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Advances in Magnetic‐Nanomaterial‐Based Mechanotransduction for Cell Fate Regulation
Advanced Materials ( IF 27.4 ) Pub Date : 2018-03-15 , DOI: 10.1002/adma.201705673
Congyu Wu 1 , Yajing Shen 1 , Mengwei Chen 1 , Kun Wang 1 , Yongyong Li 1 , Yu Cheng 1
Affiliation  

Remote control of cells and the regulation of cell events at the molecular level are of great interest in the biomedical field. In addition to chemical compounds and genes, mechanical forces play a pivotal role in regulating cell fate, which have prompted the rapid growth of mechanobiology. From a perspective of nanotechnology, magnetic nanomaterials (MNs) are an appealing option for mechanotransduction due to their capabilities in spatiotemporal manipulation of mechanical forces via the magnetic field. As a newly developed paradigm, magneto‐mechanotransduction is harnessed to physically regulate cell fate for biomedical applications. Here, the critical factors that determine the magnetomechanical forces induced by MNs in mechanotransduction are briefly reviewed. Recent innovative approaches and their underlying mechanisms for controlling cell fate are highlighted, which offer possibilities for the remote mechanical manipulation of cells and biomolecules in a precise manner. Promising applications including regenerative medicine and cancer treatment based on magnetomechanical stimulation through MNs are also addressed. Perspectives and challenges in MN‐based mechanotransduction are commented.

中文翻译:

基于磁性-纳米材料的机械转导调控细胞命运的最新进展

在生物医学领域中,细胞的远程控制和细胞事件在分子水平上的调节是非常令人感兴趣的。除了化学化合物和基因外,机械力在调节细胞命运方面也起着关键作用,这促使机械生物学迅速发展。从纳米技术的角度来看,磁性纳米材料(MNs)是机械转导的一种吸引人的选择,因为它们具有通过磁场进行时空操纵机械力的能力。作为一种新近发展的范例,磁-机械转导可用于物理调节生物医学应用中的细胞命运。在此,简要回顾了决定MN在机械转导中引起的磁机械力的关键因素。重点介绍了最新的创新方法及其控制细胞命运的潜在机制,这为以精确方式对细胞和生物分子进行远程机械操作提供了可能性。还解决了有前景的应用,包括基于MN的磁机械刺激的再生医学和癌症治疗。评论了基于MN的机械转导的观点和挑战。
更新日期:2018-03-15
down
wechat
bug