当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell
Journal of Colloid and Interface Science ( IF 9.9 ) Pub Date : 2018-03-15 , DOI: 10.1016/j.jcis.2018.03.047
Srikanth Reddy Tulsani , Arup Kumar Rath

The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%.



中文翻译:

光诱导表面改性以提高硫化铅量子点太阳能电池的性能

解决方案处理的量子点(QD)太阳能电池技术在最近几年已取得显着进步,成为下一代光伏技术的潜在竞争者。在高性能QD太阳能电池的开发中,表面配体化学在控制QD固体的掺杂类型和掺杂密度方面起着重要作用。例如,通过使用碘或硫醇作为表面活性剂,可以将处于QD太阳能电池技术最前沿的硫化铅(PbS)QD分别制成n型或p型。表面配体化学的进步使得能够形成PbS QDs层的pn同质结,从而获得较高的太阳能电池性能。它显示在这里,但是,硫醇钝化的p型PbS QD空穴传输层与n型PbS QD吸光层的费米能级差使得光电器件无法发挥其全部潜能。在这里,我们开发了一种使用表面紫外线臭氧处理的控制表面氧化技术,以受控方式对硫醇钝化的PbS QD层增加p掺杂密度。这种细微的表面修饰将空穴传输层的费米能级调整为更深的值,以促进光伏器件中的载流子提取和电压生成。在光伏设备中,紫外线臭氧处理导致功率转换效率平均提高18%,最高记录效率为8.98%。在这里,我们开发了一种使用表面紫外线臭氧处理的控制表面氧化技术,以受控方式对硫醇钝化的PbS QD层增加p掺杂密度。这种细微的表面修饰将空穴传输层的费米能级调整为更深的值,以促进光伏器件中的载流子提取和电压生成。在光伏设备中,紫外线臭氧处理导致功率转换效率平均提高18%,最高记录效率为8.98%。在这里,我们开发了一种使用表面紫外线臭氧处理的控制表面氧化技术,以受控方式对硫醇钝化的PbS QD层增加p掺杂密度。这种细微的表面修饰将空穴传输层的费米能级调整为更深的值,以促进光伏器件中的载流子提取和电压生成。在光伏设备中,紫外线臭氧处理导致功率转换效率平均提高18%,最高记录效率为8.98%。这种细微的表面修饰将空穴传输层的费米能级调整为更深的值,以促进光伏器件中的载流子提取和电压生成。在光伏设备中,紫外线臭氧处理导致功率转换效率平均提高18%,最高记录效率为8.98%。这种细微的表面修饰将空穴传输层的费米能级调整为更深的值,以促进光伏器件中的载流子提取和电压生成。在光伏设备中,紫外线臭氧处理导致功率转换效率平均提高18%,最高记录效率为8.98%。

更新日期:2018-03-15
down
wechat
bug