当前位置: X-MOL 学术Trends Food Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition
Trends in Food Science & Technology ( IF 15.1 ) Pub Date : 2018-03-15 , DOI: 10.1016/j.tifs.2018.03.013
Mehdi Mohammadian , Ashkan Madadlou

Background

Nanofibrillation of proteins by heating at extremely acidic condition for long durations (several hours to days) is studied enthusiastically in food science. The process progresses by the unidirectional self-assembly of peptides as building units of the fibrils.

Scope and approach

This communication provides a review on the underlying mechanism of protein fibrillation, and various technological properties of the fibrils, followed by discussing their biological and cellular effects.

Key findings and conclusions

Fibrillation of proteins and addition of the fibrils into liquid foods causes a significant increase of apparent viscosity. Nevertheless, certain post-fibrillation processes such as freeze-drying may result in viscosity reduction. Fibrils form cohesive viscoelastic interfaces, bringing about high foam and emulsion stability. The presence of non-fibrillated peptides and low molecular weight surfactants influence the foaming and emulsification properties of fibrillated protein solutions. Fibrillated protein can yield cold-set gels at extremely low concentrations, which is attributed to formation of space filling networks. Reinforcing polymeric films, conferring hydrophilic character to graphene, developing drug and nutraceutical delivery vehicles such as microcapsules, microgels and fibrillosome and utilization (mostly as scaffolds) in fabrication of biosensors and bio-sorbents are the other applications of protein fibrils. Fibrillation may increase the antioxidant activity of proteins. It can also influence protein digestibility. Fibrils do not exert any major toxicity towards human cell lines and can be exploited as biomimetic cell culture platforms and cellular transport shuttles.



中文翻译:

在酸性条件下加热形成的食品蛋白质纳米纤维的技术功能和生物学特性

背景

在食品科学中,对通过在极端酸性条件下长时间(数小时至数天)加热进行蛋白质纳米原纤化进行了热情的研究。该过程通过肽的单向自组装作为原纤维的构建单元而进行。

范围和方法

该交流提供了有关蛋白原纤化的潜在机制以及原纤的各种技术特性的综述,然后讨论了它们的生物学和细胞作用。

主要发现和结论

蛋白质的原纤化和将原纤维添加到液体食品中会导致表观粘度显着增加。但是,某些原纤化后的工艺(例如冷冻干燥)可能会导致粘度降低。原纤维形成内聚的粘弹性界面,带来高的泡沫和乳液稳定性。非原纤化肽和低分子量表面活性剂的存在影响原纤化蛋白溶液的起泡和乳化性能。原纤维化的蛋白质可以以极低的浓度产生冷固性凝胶,这归因于空间填充网络的形成。增强聚合物薄膜,赋予石墨烯以亲水性,开发药物和保健食品的运输工具,例如微胶囊,微凝胶和纤维状小体以及在生物传感器和生物吸附剂制造中的利用(主要是作为支架)是蛋白质原纤维的其他应用。纤颤可能会增加蛋白质的抗氧化活性。它还会影响蛋白质的消化率。原纤维对人细胞系没有任何主要毒性,可以用作仿生细胞培养平台和细胞转运穿梭体。

更新日期:2018-03-15
down
wechat
bug