当前位置: X-MOL 学术Catal. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanojunction-mediated visible light photocatalytic enhancement in heterostructured ternary BiOCl/ CdS/g-C3N4 nanocomposites
Catalysis Today ( IF 5.2 ) Pub Date : 2018-03-15 , DOI: 10.1016/j.cattod.2018.03.025
Sankeerthana Bellamkonda , G. Ranga Rao

BiOCl/CdS/g-C3N4 heterostructure and related photcatalysts have been designed successfully by decorating the 2D organic graphitic carbon nitride (g-C3N4) and inorganic bismuth oxychloride (BiOCl) semiconductor nanosheets with cadmium sulphide (CdS) nanoparticles. We have employed solvothermal cum co-precipitation method to fabricate the photocatalysts. The morphologies, optical and electronic properties of the photocatalysts have been studied by spectroscopic and microscopic methods. The BiOCl/CdS/g-C3N4 photcatalyst shows remarkably high visible-light-driven photocatalytic activity for the degradation of rhodamine B (RhB) with first order rate constant of 0.09 min−1. The observed photodegradation activity is of the order, BiOCl/CdS/g-C3N4 > CdS/g-C3N4 > BiOCl/g-C3N4 > g-C3N4. Radical scavenging experiments show that superoxide radicals (O2) and holes (h+) are more active species in the photodegradation of RhB than hydroxyl radicals (OH). This study reveals that morphology and synergic interactions of BiOCl and g-C3N4 nanosheets with CdS nanoparticles are crucial to separate the photogenerated electron-hole pairs and enhance the photocatalytic activity for RhB degradation.



中文翻译:

纳米结介导的可见光光催化增强异结构三元BiOCl / CdS / gC 3 N 4纳米复合材料

BiOCl / CdS / gC 3 N 4异质结构和相关的光催化剂已通过用硫化镉(CdS)纳米粒子装饰2D有机石墨碳氮化物(gC 3 N 4)和无机氯氧化铋(BiOCl)半导体纳米片而成功设计。我们已经采用溶剂热和共沉淀法来制备光催化剂。通过光谱和显微镜方法研究了光催化剂的形态,光学和电子性质。BiOCl / CdS / gC 3 N 4催化剂对罗丹明B(RhB)的降解表现出很高的可见光驱动光催化活性,其一级速率常数为0.09 min -1。观察到的光降解活性的顺序为BiOCl / CdS / gC 3 N 4  > CdS / gC 3 N 4  > BiOCl / gC 3 N 4  > gC 3 N 4。自由基清除实验显示,超氧自由基(Ø-2个)和孔(H+)在RhB的光降解中比羟基自由基更活泼。ØH)。这项研究表明,BiOCl和gC 3 N 4纳米片与CdS纳米粒子的形态和协同相互作用对于分离光生电子-空穴对和增强RhB降解的光催化活性至关重要。

更新日期:2018-03-15
down
wechat
bug