当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes
Nano Energy ( IF 17.6 ) Pub Date : 2018-03-15 , DOI: 10.1016/j.nanoen.2018.03.043
Yu Chen , Seonyoung Yoo , Xiaxi Li , Dong Ding , Kai Pei , Dongchang Chen , Yong Ding , Bote Zhao , Ryan Murphy , Ben deGlee , Jiang Liu , Meilin Liu

Commercialization of solid oxide fuel cells (SOFCs) is impeded by severe cathode degradation from the poisoning effect of contaminants commonly encountered in air (such as H2O and CO2) and from other cell components (e.g., Cr species from chromium-containing interconnector). Here we report our findings in unraveling the mechanism of Cr poisoning of La.6Sr.4Co.2Fe.8O3 (LSCF) cathodes using our unique in situ/operando surface enhanced Raman spectroscopy. Further, we present an effective strategy to enhancing the tolerance to contaminants poisoning of LSCF cathode through infiltration of a hybrid catalyst coating, which is composed of a conformal film of perovskite PrNi.5Mn.5O3 (PNM) and exsoluted PrOx nano-particles. The coating is catalytically active to oxygen reduction reaction but inert to contaminant poisoning. When subjected to an accelerated Cr-poisoning test, the cells with a hybrid catalyst-coated LSCF cathode show excellent peak power density (Pmax of 0.71 Wcm−2) and significantly enhanced durability (degradation rate of 0.0434% h−1 at 0.7 V), much better than those of cells with a bare LSCF cathode (Pmax of ~0.46 Wcm−2 and degradation rate of 0.4% h−1 at 0.7 V). The results suggest that surface modification of electrodes with a coating of rationally designed catalysts is a cost-effective approach to dramatically reducing electrode degradation caused by contaminations.



中文翻译:

增强对固体氧化物燃料电池阴极污染物中毒的耐受性的有效策略

严重的阴极降解受到空气中常见污染物(例如H 2 O和CO 2)以及其他电池组件(例如,含铬互连器中的Cr物质)的毒害作用的严重影响,从而阻碍了固体氧化物燃料电池(SOFC)的商业化)。在这里,我们报告了我们利用独特的原位/操作方法揭示了La .6 Sr .4 Co .2 Fe .8 O 3(LSCF)阴极的Cr中毒机理的发现。表面增强拉曼光谱。此外,我们提出了一种有效的策略,可通过渗入混合催化剂涂层来增强对LSCF阴极污染物中毒的耐受性,该涂层由钙钛矿PrNi .5 Mn .5 O 3(PNM)的共形膜和溶出的PrO x纳米组成。 -粒子。该涂层对氧还原反应具有催化活性,但对污染物中毒呈惰性。当进行加速的Cr中毒测试时,具有混合催化剂涂层的LSCF阴极的电池表现出出色的峰值功率密度(P max为0.71 Wcm -2)和显着增强的耐久性(降解率为0.0434%h -1)在0.7 V时),比裸露LSCF阴极的电池要好得多(P max为〜0.46 Wcm -2,在0.7 V时降解率为0.4%h -1)。结果表明,用合理设计的催化剂涂层对电极进行表面改性是一种经济有效的方法,可以显着减少污染物引起的电极降解。

更新日期:2018-03-15
down
wechat
bug