当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment and potential of membrane cascades for organic solvent nanofiltration of hydroformylation media through a graphical representation composed of performance maps
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.ces.2018.03.025
Antoine Lejeune , Murielle Rabiller-Baudry , Thierry Renouard , Béatrice Balannec , Yatong Liu , Jonathann Augello , Dominique Wolbert

Abstract This paper aims at proposing a graphical representation composed of several performance maps to help to answer to some current questions that can puzzle membrane end-users facing the arrangement of membranes in cascade in order to better master separation of complex media. Indeed, different compromises can be highlighted according to realistic goals for the separation such as quality and recovery yield of each fraction/component, energy consumption and required membrane area. This representation needed first the systematic simulations of cascades of pre-selected configurations. These last ones were chosen thanks to the target application field, namely the organic solvent nanofiltration of a final synthesis media of hydroformylation that is a homogeneous catalysed reaction. We voluntary assumed the a priori limitation of the number of stages to 5, anticipating that more complex cascades will probably be too expensive (both operating and capital costs). The graphical representation by itself is based on sets of six 2D-maps. Each map highlights relationships selected in an appropriate way between two of the six selected criteria: extraction/recovery, retentate/permeate quality/purity, membrane filtering area and overall energy consumption. For sake of illustration, the separation of 2 components C and A was considered. C/A has been chosen in a 1/1000 molar ratio, where C corresponds to the less retained component of the catalytic system that must be recovered in the retentate and A corresponds to the less transmitted product to extract in the permeate. In realistic nanofiltration conditions achieved in toluene, the rejections were experimentally determined on the initial media to filter. C has a high rejection (88%) whereas A has a low one (30%). The simulations of cascades were established using these constant values for rejection and the experimental permeate flux. For sake of an illustration of the use of the graphical representation, a case study was finally discussed regarding a given target of recovery for the two desired components, namely at least 99% of C recovery and better than 70% of A extraction. A complementary multi-criteria analysis was added aiming at facilitating the decision-making.

中文翻译:

通过由性能图组成的图形表示对加氢甲酰化介质的有机溶剂纳滤膜级联的评估和潜力

摘要 本文旨在提出由几个性能图组成的图形表示,以帮助回答一些当前的问题,这些问题可能会使膜最终用户面临级联膜的排列,以便更好地掌握复杂介质的分离。事实上,根据分离的实际目标,例如每个馏分/组分的质量和回收率、能耗和所需的膜面积,可以突出不同的折衷方案。这种表示首先需要对预选配置的级联进行系统模拟。由于目标应用领域,即作为均相催化反应的加氢甲酰化的最终合成介质的有机溶剂纳滤,选择了最后这些。我们自愿假设阶段数量的先验限制为 5,预计更复杂的级联可能会太昂贵(运营和资本成本)。图形表示本身基于六个 2D 地图的集合。每张图都突出显示了以适当方式选择的六个选定标准中的两个之间的关系:提取/回收、滞留物/渗透物质量/纯度、膜过滤面积和总能耗。为了说明起见,考虑了 2 个组分 C 和 A 的分离。已选择 1/1000 摩尔比的 C/A,其中 C 对应于必须在渗余物中回收的催化系统中较少保留的组分,而 A 对应于在渗透物中提取的较少传输的产物。在甲苯中实现的实际纳滤条件下,剔除率是根据要过滤的初始介质通过实验确定的。C 的拒绝率很高(88%),而 A 的拒绝率很低(30%)。级联的模拟是使用这些常数值和实验渗透通量来建立的。为了说明图形表示的使用,最后讨论了关于两种所需组分的给定回收率目标的案例研究,即至少 99% 的 C 回收率和优于 70% 的 A 提取率。添加了补充性多标准分析,旨在促进决策。为了说明图形表示的使用,最后讨论了关于两种所需组分的给定回收率目标的案例研究,即至少 99% 的 C 回收率和优于 70% 的 A 提取率。添加了补充性多标准分析,旨在促进决策。为了说明图形表示的使用,最后讨论了关于两种所需组分的给定回收率目标的案例研究,即至少 99% 的 C 回收率和优于 70% 的 A 提取率。添加了补充性多标准分析,旨在促进决策。
更新日期:2018-06-01
down
wechat
bug