当前位置: X-MOL 学术J. Anal. Appl. Pyrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-cracking of bio-oil distillate bottoms with vacuum gas oil for enhanced production of light compounds
Journal of Analytical and Applied Pyrolysis ( IF 5.8 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.jaap.2018.03.014
Yong S. Choi , Yaseen Elkasabi , Paul C. Tarves , Charles A. Mullen , Akwasi A. Boateng

Abstract Seamless co-processing of pyrolysis bio-oil within existing petroleum refineries is the most synergistic and economic way to improve biorefinery output. Coprocessing bio-oil with vacuum gas oil (VGO) is one logical pathway. Bio-oil has a viscosity and molecular weight range similar to that of VGO, and the hydrogen-rich nature of VGO can chemically complement the bio-oil hydrogen deficiency. Distillation of biomass pyrolysis oils produces solid residues with a significant fraction of fixed carbon and heavy volatiles. Maximization of yields of light compounds like olefins and gasoline-range aromatics are crucial for both attainment of desired product output levels as well as to follow methods that mimic petroleum-based methods and chemistries. Herein we discuss a systematic study on the additive coprocessing of specific bio-oil distillation bottoms with VGO. Tail-gas reactive pyrolysis (TGRP) bio-oils from spirulina, switchgrass, and guayule biomasses were distilled, and their bottoms were subject to analytical experiments in mixtures with VGO over different zeolite catalysts (no catalyst, HZSM-5, Y-zeolite). Switchgrass-based bottoms exhibit greater hydrogen deficiency and higher oxygen content compared with that of spirulina or guayule. Switchgrass-based bottoms, with or without VGO, produced more aromatics and less olefins and alkanes, compared with spirulina or guayule bottoms. When compared across different mixing ratios, thermal cracking of a 10:1 guayule/VGO mixture resulted in higher aromatics yields than even the VGO by itself. Addition of more VGO up to a 1:1 ratio of VGO/switchgrass bottoms nearly tripled the production of BTEX compounds. For hydrogen-rich bottoms spirulina and guayule, LPG-range olefins yields increased nearly 50% for 1:1 VGO/bottoms blends, compared with theoretical yields.

中文翻译:

生物油馏出物与减压瓦斯油共裂化以提高轻质化合物的产量

摘要 在现有炼油厂内对热解生物油进行无缝协同处理是提高生物炼油产量最具协同性和经济性的方式。用真空瓦斯油 (VGO) 协同处理生物油是一种合乎逻辑的途径。生物油具有与 VGO 相似的粘度和分子量范围,并且 VGO 的富氢性质可以在化学上补充生物油的氢不足。生物质热解油的蒸馏产生含有大量固定碳和重挥发物的固体残留物。最大化轻质化合物(如烯烃和汽油范围内的芳烃)的产率对于实现所需的产品产量水平以及遵循模拟石油方法和化学方法的方法至关重要。在此,我们讨论了对特定生物油蒸馏残渣与 VGO 进行添加剂协同处理的系统研究。蒸馏来自螺旋藻、柳枝稷和银胶菊生物质的尾气反应热解 (TGRP) 生物油,并在不同沸石催化剂(无催化剂、HZSM-5、Y-沸石)上与 VGO 混合对它们的底部进行分析实验. 与螺旋藻或银胶菊相比,基于柳枝稷的底部表现出更大的缺氢和更高的氧含量。与螺旋藻或银胶菊残渣相比,基于柳枝稷的残渣,无论是否含有 VGO,都会产生更多的芳烃和更少的烯烃和烷烃。当在不同的混合比下进行比较时,10:1 银胶菊/VGO 混合物的热裂解产生的芳烃产率甚至高于 VGO 本身。添加更多 VGO 到 1:VGO/柳枝稷残渣的 1 比率几乎使 BTEX 化合物的产量增加了两倍。对于富氢底部螺旋藻和银胶菊,与理论产率相比,1:1 VGO/底部混合物的 LPG 范围烯烃产率增加了近 50%。
更新日期:2018-06-01
down
wechat
bug