当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fe2O3 Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic Li?O2 Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-03-12 , DOI: 10.1002/aenm.201703513
Zhaolong Li 1 , Swapna Ganapathy 1 , Yaolin Xu 1 , Quanyao Zhu 2 , Wen Chen 2 , Ivan Kochetkov 3 , Chandramohan George 1 , Linda F. Nazar 3 , Marnix Wagemaker 1
Affiliation  

Although the high energy density of LiO2 chemistry is promising for vehicle electrification, the poor stability and parasitic reactions associated with carbon‐based cathodes and the insulating nature of discharge products limit their rechargeability and energy density. In this study, a cathode material consisting of α‐Fe2O3 nanoseeds and carbon nanotubes (CNT) is presented, which achieves excellent cycling stability on deep (dis)charge with high capacity. The initial capacity of Fe2O3/CNT electrode reaches 805 mA h g−1 (0.7 mA h cm−2) at 0.2 mA cm−2, while maintaining a capacity of 1098 mA h g−1 (0.95 mA h cm−2) after 50 cycles. The operando structural, spectroscopic, and morphological analysis on the evolution of Li2O2 indicates preferential Li2O2 growth on the Fe2O3. The similar dspacing of the (100) Li2O2 and (104) Fe2O3 planes suggest that the latter epitaxially induces Li2O2 nucleation. This results in larger Li2O2 primary crystallites and smaller secondary particles compared to that deposited on CNT, which enhances the reversibility of the Li2O2 formation and leads to more stable interfaces within the electrode. The mechanistic insights into dual‐functional materials that act both as stable host substrates and promote redox reactions in LiO2 batteries represent new opportunities for optimizing the discharge product morphology, leading to high cycling stability and coulombic efficiency.

中文翻译:

Fe2O3纳米粒子种子催化剂增强非质子锂在深度(放电)中的循环能力氧气电池

虽然Li的高能量密度 Ò 2化学是有希望用于车辆电气化,稳定性差,并与基于碳的阴极和放电产物的绝缘性质相关联的寄生反应限制了它们的可再充电性和能量密度。在这项研究中,阴极材料包括的α-Fe的2 ö 3 nanoseeds和碳纳米管(CNT)被呈现,这实现在具有高容量深(DIS)电荷优异的循环稳定性。Fe 2 O 3 / CNT电极的初始容量在0.2 mA cm -2时达到805 mA hg -1(0.7 mA h cm -2),同时保持1098 mA hg的容量50个循环后-1(0.95 mA h cm -2)。Li 2 O 2析出的操作结构,光谱和形态学分析表明,Li 2 O 2在Fe 2 O 3上优先生长。类似d -间隔(100)的立2 ö 2和(104)的Fe 2个ö 3平面表明,后者外延诱导栗2 ö 2成核。这导致更大的Li 2 O 2与沉积在CNT上的微晶相比,原生微晶和较小的次级颗粒增强了Li 2 O 2形成的可逆性,并导致电极内的界面更稳定。的机械见解成既充当稳定宿主底物和促进锂的氧化还原反应的双官能材料 Ò 2个电池代表了新的机会用于优化放电产物的形态,从而导致高的循环稳定性和库仑效率。
更新日期:2018-03-12
down
wechat
bug