当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of a calcium looping process (CaL) to molten carbonate fuel cells (MCFCs), as carbon concentration system: First findings
Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2018-03-10 , DOI: 10.1016/j.jcou.2018.03.002
M. Della Pietra , M. Santarelli , S. Stendardo , S. McPhail , Juan Pedro Perez-Trujillo , Francisco Elizalde-Blancas

The utilisation of coal as fuel for the production of energy will grow parallel with the increase of the cost of oil in the next years. This paper aims to investigate the integration between two clean coal technologies: Calcium Looping (CaL) process and Molten Carbonate Fuel Cell (MCFC) in order to produce a high CO2 concentrated stream.

The main goal of this work is to find out the optimum working point of a system using CaL and MCFC technologies, coupled together, to produce decarbonised energy from coal as a primary energy source. The integrated system of CaL with MCFC presented in this paper, is fed with a raw syngas coming from coal gasification [1]. The raw syngas is decarbonised using calcium oxide as solid sorbent in the first reactor of CaL (carbonator), subsequently the clean syngas flowing out of the carbonator is used as anodic fuel for an MCFC. The thermal regeneration of solid sorbents occurs burning methane with air producing a CO2 reach gas, that feeds the cathodic compartment of MCFC.

This configuration allows to concentrate the CO2 from cathode side to anode side of the MCFC, using internal electrochemical reactions of the cell, producing electric power at the same time.

This work has been structured to tackle the coupling of CaL with MCFC using a combined numerical and experimental approach. Thus the investigation of the possible integration has been carried out starting with a lumped model simulating the whole calcium looping process. The model was used to investigate the behaviour of the CaL system when varying the amount of solid sorbent used in the process.

Data coming from the model in terms of gas composition flowing out from CaL reactors were subsequently validated experimentally simulating different operating conditions in a MCFC single cell (81 cm2). Performance of the MCFC was monitored with polarisation curves and power density curves, aiming to integrate experimentally the electric behaviour of the whole system, in order to have a first validation of the two systems working together.



中文翻译:

将钙环化工艺(CaL)集成到熔融碳酸盐燃料电池(MCFC)中作为碳浓缩系统:首次发现

未来几年,利用煤炭作为燃料生产能源将与石油成本的增长同时增长。本文旨在研究两种清洁煤技术之间的集成:钙循环(CaL)工艺和熔融碳酸盐燃料电池(MCFC),以产生高CO 2浓缩流。

这项工作的主要目标是找出结合使用CaL和MCFC技术的系统的最佳工作点,以煤炭作为主要能源来生产脱碳能源。本文介绍的CaL与MCFC的集成系统中装有煤气化产生的粗制合成气[1]。在CaL的第一个反应器(碳酸化器)中,使用氧化钙作为固体吸附剂对粗合成气进行脱碳,随后从碳酸化器中流出的清洁合成气用作MCFC的阳极燃料。固体吸附剂的热再生发生时,甲烷与空气一起燃烧,产生的CO2到达气体,该气体进入MCFC的阴极室。

这种配置允许利用电池的内部电化学反应从MCFC的阴极侧到阳极侧浓缩CO2,同时产生电能。

这项工作的结构是使用数值和实验相结合的方法来解决CaL与MCFC的耦合问题。因此,从模拟整个钙循环过程的集总模型开始,对可能的积分进行了研究。当改变过程中使用的固体吸附剂的量时,该模型用于研究CaL系统的行为。

随后,通过实验模拟了MCFC单电池(81 cm2)中不同的运行条件,验证了从CaL反应器流出的气体成分方面来自模型的数据。MCFC的性能通过极化曲线和功率密度曲线进行监控,目的是通过实验整合整个系统的电性能,以便首先验证两个系统协同工作。

更新日期:2018-03-10
down
wechat
bug